K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

\(a,\frac{8}{x}=\frac{x}{4}\)

\(=>x\cdot x=8\cdot4\)

\(=>x^2=32\)

\(=>x=\sqrt{32}\)

2 tháng 9 2019

\(c,\frac{2x+3}{6}=\frac{x+1}{-8}\)

\(=>-8\cdot\left(2x+3\right)=6\cdot\left(x+1\right)\)

\(=>-16x-24=6x+6\)

\(=>-16x-6x=6+24\)

\(=>-22x=30\)

\(=>x=\frac{30}{-22}=-\frac{15}{11}\)

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

13 tháng 7 2016

a ) x/2=y/5 suy ra x/4=y/10

x/4=z/3 suy ra x/4=2z/3

suy ra x/4=y/10=2z/3=x+y-2z/4+10-6=8/8=1

x/4=1 suy ra x=1*4=4

y/10=1 suy ra y=10*1=10

z/3=1 suy ra z=3*1=3

11 tháng 8 2018

a) \(\frac{x}{6}=\frac{y}{-7};\frac{x}{3}=\frac{z}{-8}\Rightarrow\frac{y}{-21}=\frac{x}{18}=\frac{z}{-48}\)

Áp dụng tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{2x}{36}=\frac{2y}{-42}=\frac{3z}{-144}=\frac{2x-2y+3z}{36-\left(-42\right)+\left(-144\right)}=\frac{56}{-66}=\frac{-28}{33}\)

\(\Rightarrow2x=\frac{28}{33}.36=\frac{-336}{11}\Rightarrow x=\frac{-168}{11}\)

    \(2y=\frac{-28}{33}.\left(-42\right)=\frac{392}{11}\Rightarrow y=\frac{196}{11}\)

    \(3z=\frac{-28}{33}.\left(-144\right)=\frac{1344}{11}\Rightarrow z=\frac{448}{11}\)

b) \(3x=-4y=2z\Rightarrow\frac{x}{-4}=\frac{y}{3};\frac{y}{2}=\frac{z}{-4}\Rightarrow\frac{x}{-8}=\frac{y}{6}=\frac{z}{-12}\)

\(\Rightarrow\frac{2x}{-16}=\frac{2y}{12}=\frac{3z}{-36}=\frac{2x-2y+3z}{-16-12+\left(-36\right)}=\frac{56}{-64}=\frac{-7}{8}\)

\(\Rightarrow2x=\frac{-7}{8}.\left(-16\right)=14\Rightarrow x=7\)

     \(2y=\frac{-7}{8}.12=\frac{-21}{2}\Rightarrow y=\frac{-21}{4}\)

     \(3z=\frac{-7}{8}.\left(-36\right)=\frac{63}{2}\Rightarrow z=\frac{21}{2}\)

c) Tương tự

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

11 tháng 9 2023

Bài 4: 

a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)

\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)

\(1,25-x=\dfrac{11}{12}\)

\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)

\(x=\dfrac{1}{3}\)

b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)

\(x-\dfrac{7}{6}=\dfrac{13}{12}\)

\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)

\(x=\dfrac{27}{12}=\dfrac{9}{4}\)

c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)

\(4-\left(2x+1\right)=\dfrac{8}{3}\)

\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)

\(2x+1=\dfrac{20}{3}\)

\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)

\(2x=\dfrac{17}{3}\)

\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)

Bài 15:

a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)

\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)

\(=>x=\left(\dfrac{-2}{3}\right)^8\)

b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)

\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)

\(=>x=\left(\dfrac{4}{9}\right)^9\)

c) \(\left(x+4\right)^3=-125\)

\(\left(x+4\right)^3=\left(-5\right)^3\)

\(=>x+4=-5\)

\(x=-5-4\)

\(=>x=-9\)

d) \(\left(10-5x\right)^3=64\)

\(\left(10-5x\right)^3=4^3\)

\(=>10-5x=4\)

\(5x=10-4\)

\(5x=6\)

\(=>x=\dfrac{6}{5}\)

e) \(\left(4x+5\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)

Bài 16:

a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)

\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)

\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)

b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)

\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)

\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)

c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)

\(=\dfrac{7}{4}.\dfrac{-12}{5}\)

\(=\dfrac{-21}{5}\)

\(#Wendy.Dang\)

 

 

11 tháng 9 2023

Uh, chừa sau k dám học muộn nx

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

19 tháng 5 2017

a) đặt \(\dfrac{3}{7x}=\dfrac{8}{13y}=\dfrac{6}{19z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}\\y=\dfrac{8}{13k}\\z=\dfrac{6}{19k}\end{matrix}\right.\)

Thay vào 2x -y-z=-6, ta được:

\(2\cdot\dfrac{3}{7k}-\dfrac{8}{13k}-\dfrac{6}{19k}=-6\Leftrightarrow\left(\dfrac{6}{7}-\dfrac{8}{13}-\dfrac{6}{19}\right)\cdot\dfrac{1}{k}=-6\Leftrightarrow\dfrac{1}{k}=\dfrac{5187}{64}\Leftrightarrow k=\dfrac{64}{5187}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}=\dfrac{2223}{64}\\y=\dfrac{8}{13k}=\dfrac{399}{8}\\z=\dfrac{6}{19k}=\dfrac{819}{32}\end{matrix}\right.\)

Vậy.............

{số vẫn không đẹp mấy nhỉ T_T!!!}

19 tháng 5 2017

\(\dfrac{3}{7}.x=\dfrac{8}{13}y=\dfrac{6}{19}z\)

\(\Rightarrow\)\(\dfrac{x}{\dfrac{7}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\Rightarrow.\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\)

AD tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}=\dfrac{2x-y-z}{\dfrac{14}{3}-\dfrac{13}{8}-\dfrac{19}{6}}=\dfrac{-6}{\dfrac{-3}{24}}=48\)

\(\Rightarrow\)x=112;y=78;z=152