K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

\(\left(3x-2\right)^{2k}+\left(y-\dfrac{1}{4}\right)^{2k}\ge0\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(3x-2\right)^{2k}=0\\\left(y-\dfrac{1}{4}\right)^{2k}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{4}\end{matrix}\right.\)

5 tháng 12 2017

thanks

5 tháng 10 2016

Vì \(\left(2x-1\right)^{2k}\ge0;\left(y-\frac{1}{2}\right)^{2k}\ge0\forall x;y\)

Mà theo đề bài: \(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)

\(\Rightarrow\begin{cases}\left(2x-1\right)^{2k}=0\\\left(y-\frac{1}{2}\right)^{2k}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{1}{2}=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)

Vậy \(x=y=\frac{1}{2}\)

5 tháng 10 2016

gghut

15 tháng 12 2017

ta có \(\left(3x-2\right)^{2k}\ge0\);\(\left(y-\frac{1}{4}\right)^{2k}\ge0\)với mọi x,y,k

Dấu '=' xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(3x-2\right)^{2k}=0\\\left(y-\frac{1}{4}\right)^{2k}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2=0\\y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{1}{4}\end{cases}}}\)

15 tháng 12 2017

Vì (3x-2)^2k = [(3x-2)^k]^2 >=0 và (y-1/4)^2k = [(y-1/4)^k]^2 >=0

=> VT >=0

Dấu "=" xảy ra <=> 3x-2=0 và y-1/4=0 <=> x=2/3 và y=1/4

Vậy x=2/3;y=1/4

k mk nha

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

4 tháng 4 2022

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

31 tháng 7 2023

\(4.3^x+3^{x+1}=63\)

\(\Rightarrow4.3^x+3.3^x=63\)

\(\Rightarrow7.3^x=63\Rightarrow3^x=9=3^2\Rightarrow x=2\)

\(9.\left(\dfrac{2}{3}\right)^{x+2}-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow9.\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow9.\dfrac{4}{9}^{ }.\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\left(4-1\right)=\dfrac{4}{3}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\dfrac{1}{3}=\dfrac{4}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=4\)

mà \(0< \left(\dfrac{2}{3}\right)^x< 1;4>0;x>0\)

\(\Rightarrow x\in\varnothing\)