Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy+x+2\)
\(A=\left(x^2-2xy+y^2\right)+\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{7}{4}\)
\(A=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x+\frac{1}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}=A\ge\frac{7}{4}>0\forall x;y\)
Vậy không có các số tự nhiên thỏa mã đẳng thức \(A=2x^2+y^2-2xy+x+2=0\)
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0
<=>(x-y+1)^2+(y-1)^2=0
<=>y=1;x=0
\(3xy+x+15y-44=0\)
\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)=49\)
\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=49\)
Vì x;y là số nguyên
\(\Rightarrow\hept{\begin{cases}3y+1\\x+5\end{cases}\in}Z\)
\(\Rightarrow\hept{\begin{cases}3y+1\\x+5\end{cases}\in}\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
Tự lập bảng giá trị nhé
\(y^2\)+ 2xy-7x-12=0 <=> 4\(y^2\)+8xy-28x-48=0 <=> 4\(y^2\)-49+4x(2y-7)=-1
<=> (2y-7)(2y+7+4x)=-1
=> Ta có : 2y-7= -1 và 2y+7+4x= 1
hoặc 2y-7=1 và 2y+7+4x=-1
*) 2y-7=1và 2y+7+4x=-1 *) 2y-7=-1 và 2y+7+4x=1
=> x=-4 và y=4 =>x=-3 và y=3
Vậy x=-4 và y=4 Hoặc x=-3 và y=3