K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

c) \(^{x^2}\)+xy-x-2=0

18 tháng 9 2018

bn vào trang wed này mik chỉ cho, cứ nhắn tin cho mik đi rồi mik sẽ ns.

13 tháng 10 2019

(2x-1)*(y-1)=10

suy ra 2x-1=10/(y-1)

suy ra (y-1) thuộc ước của 10.ta có bảng sau:

y-1

1

-1

2

-2

5

-5

10

-10

y

2

0

3

-1

6

-4

11

-9

x

3

-4,5

13/6

-2

1/5

-0,5

1

0

Kết quả

Nhận

Loại

Loại

Nhận

Loại

Loại

Nhận

nhận

vậy...........................

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

26 tháng 7 2019

a) xy - 2x + y = -2

=> x(y - 2) + (y - 2) = -4

=> (x + 1)(y - 2) = -4

=> x + 1;y - 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bamhr :

x + 1 1 -1 2 -2 4 -4
y - 2-4 4 -2 2 -1 1
   x 0 -2 1 -3 3 -5
   y -2 6 0 4 1 3

Vậy ...

b) -xy + 3x - y = 1

=> -x(y - 3) - (y - 3) = 4

=> (-x - 1)(y - 3) = 4

=> -x - 1; y - 3 Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

  -x - 1  1  -1  2  -2  4 -4
  y - 3  4  -4  2  -2  1  -1
    x -2 0 -3 1 -5 3
   y 7 -1 5 1 4 2

Vậy ...

9 tháng 8 2017

B3) a) x(x-5)-4(x-5)=0

<=> (x-4)(x-5)=0

TH1 :x-4=0

<=.x=4

TH2 : x-5=0

<=>x=5

b) x(x-6)-7x-42=0

<=>x(x+6)-7(x+6)=0

<=>(x-7)(x+6)=0

th1;x-7=0

<=>x=7

th2; x+6=0

<=>x=-6

c)x^3-5x^2+x-5=0

<=>  x(x^2+1)-5(x^2+1)=0

<=> (x-5)(x^2+1)=0

th1:x-5=0

<=>x=5

TH2 : x^2+1=0

<=> x^2=-1 ( vo li )

=> th2 ko tồn tại 

nho thick nha  

9 tháng 8 2017

Bài 3

a, x(x-5)-4(x-5)=0

 (x-4)(x-5)=0

=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

b,x(x+6)-7(x+6)=0

(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)

c,x^2(x-5)+(x-5)=0

(x^2+1)(x-5)=0

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt