Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 2007 . (144 - 1^2 )...(144 - 12^2)....(144 - 20^2)
= 2007 . (144-1^2)...(144-144)...(144-20^2)
= 2007 (144 - 1^2)....0 ..(144-20^2)
= 0
`2^(x+3)+2^x=144`
`2^x *2^3 +2^x =144`
`2^x (8+1)=144`
`2^x *9=144`
`2^x =16`
`2^x =16`
`2^x =2^4`
`=>x=4`
2\(^{x+3}\) + 2\(^x\) = 144
2\(^x\).( 23 + 1) = 144
2\(x\)(8 + 1) = 144
2\(^x\) . 9 = 144
2\(^x\) = 144 : 9
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
\(144^{2015}=\left(2^4.3^2\right)^{2015}=2^{4.2015}.3^{2.2015}\)
\(\Rightarrow\left\{{}\begin{matrix}X=4.2015\\Y=2.2015\end{matrix}\right.\)
\(\left(\frac{X+Y}{X-Y}\right)^{\frac{X}{Y}}=\left(\frac{4.2015+2.2015}{4.2015-2.2015}\right)^{\frac{4.2015}{2.2015}}=\left[\frac{2015\left(4-2\right)}{2015\left(4+2\right)}\right]^{\frac{4}{2}}=\left(\frac{2}{6}\right)^2=\left(\frac{1}{3}\right)^2=\frac{1}{9}\)
\(a)2^{x+3}+2^x=144\)
\(2^x.3+2^x.1=144\)
\(2^x.\left(3+1\right)=144\)
\(2^x.4=144\)
\(2^x=144:4\)
\(2^x=36\)
\(\Rightarrow x\in\varnothing\)
phần b chịu
a, 2x+3 + 2x = 144
2x . 23 + 2x . 1 = 144
2x . ( 23 + 1 ) = 144
2x . 9 = 144
2x = 144 : 9
2x = 16
2x = 24
x = 4
(4x - 1)2 = 25 . 9
\(\Rightarrow\)(4x - 1) . (4x - 1) = 225
\(\Rightarrow\)(4x - 1) . (4x - 1) = 15 . 15
\(\Rightarrow\)4x - 1 = 15
\(\Rightarrow\)4x = 16
\(\Rightarrow\)x = 4
\(4^{x-5}=16\)
\(4^{x-5}=4^2\)
\(x-5=2\)
\(x=2+5\)
\(x=7\)
\(45-2^{x-1}=29\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
\(2+x=12\)
\(x=12-2\)
\(x=10\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(x-5=9\)
\(x=14\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
\(13-x=3\)
\(x=13-3\)
\(x=10\)
\(...4^{x-5}=4^2\Rightarrow x-5=2\Rightarrow x=7\)
\(...2^{x-1}=45-29=16\Rightarrow2^{x-1}=2^4\Rightarrow x-1=4\Rightarrow x=5\)
\(...\Rightarrow\left(2+x\right)^2=12^2\Rightarrow\left[{}\begin{matrix}2+x=12\\2+x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-14\end{matrix}\right.\)
\(...\Rightarrow\left(x-5\right)^2=9^2\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
\(...\Rightarrow\left(13-x\right)^4=3^4\Rightarrow\left[{}\begin{matrix}13-x=3\\13-x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=16\end{matrix}\right.\)