Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+...+\dfrac{1}{9.19}+\dfrac{1}{10.19}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{18.19}+\dfrac{2}{19.20}\)
\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{20}\right)\)
\(A=2.\dfrac{1}{5}\)
\(A=\dfrac{2}{5}\)
\(\dfrac{1}{1.3}+\dfrac{1}{2.3}+\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}\)
\(=\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\dfrac{7}{18}:\dfrac{1}{2}\)
\(=\dfrac{7}{9}\)
a/\(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{18}{5}\)\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot11}{5\cdot7}=\frac{22}{35}\)
b/\(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11^2\cdot5^3\cdot13^3\cdot2\cdot3}{2^3\cdot3^4\cdot5\cdot11^2\cdot13}=\frac{5^2\cdot13^2}{2^2\cdot3^3}=\frac{4225}{108}\)
c/\(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}=\frac{2^2\cdot3^3\cdot37\cdot5\cdot199+2\cdot3^2\cdot13\cdot17}{2^3\cdot3\cdot83\cdot11\cdot181-2^4\cdot3\cdot83}=\frac{2\cdot3^2\cdot11\cdot20101}{2^3\cdot3^3\cdot13\cdot17\cdot83}=\frac{11\cdot20101}{2^2\cdot3\cdot13\cdot17\cdot83}\)
Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?
\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)
\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)
\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)
------------------------------
\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)
\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)
\(B=\frac{2017}{2}\)
-------------------------------
\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)
\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)
--------------------------------
\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)
\(D=\frac{1}{20}\)
\(A=\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4.5}+\frac{1}{6.5}+\frac{1}{6.7}+\frac{1}{8.7}+...+\frac{1}{18.19}+\frac{1}{20.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{5-4}{4.5}+\frac{6-5}{6.5}+\frac{7-6}{6.7}+...+\frac{20-19}{20.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{5}\)
\(\Rightarrow A=\frac{2}{5}\)
Mình có cách giải khác:
A= \(\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)
A= \(\frac{2.1}{2.2.5}+\frac{2.1}{2.3.5}+\frac{2.1}{2.3.7}+\frac{2.1}{2.4.7}+...+\frac{2.1}{2.9.19}+\frac{2.1}{2.10.19}\)
A= \(\frac{2.1}{4.5}+\frac{2.1}{5.6}+\frac{2.1}{6.7}+\frac{2.1}{7.8}+...+\frac{2.1}{18.19}+\frac{2.1}{19.20}\)
A= \(2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
A=\(2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
A= \(2.\left(\frac{1}{4}+0+0+0+...+0+0-\frac{1}{20}\right)\)
A=\(2.\left(\frac{1}{4}-\frac{1}{20}\right)\)
A=\(2.\left(\frac{5}{20}-\frac{1}{20}\right)\)
A= \(2.\frac{1}{5}\)
A=\(\frac{2}{5}\)
Xong rùi đó!!!!! :))