Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)
\(=\dfrac{7}{1\cdot8}+\dfrac{7}{8\cdot15}+\dfrac{7}{360}+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)
\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}\)
\(=\dfrac{14}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}=\dfrac{343}{360}+\dfrac{1}{7n-6}\)
\(=\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\)
\(=\dfrac{2401n-1698}{360\left(7n-6\right)}\)
\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\\ =\left(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\right)\\ =\left(\dfrac{315}{360}+\dfrac{21}{360}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{7n-6}{\left(7n+1\right)\left(7n-6\right)}\right)\)
\(=\dfrac{343}{360}+\dfrac{7n+1}{\left(7n-6\right)\left(7n+1\right)}\\ =\dfrac{343}{360}+\dfrac{1}{7n-6}\\ =\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-2058+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-1698}{360\left(7n-6\right)}\)
\(=\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.24}+...++\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)
\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{24}+...+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)
\(=1\)
\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\) \(\Rightarrow2S=1-\dfrac{1}{2n+1}\)
\(\Rightarrow S=\dfrac{n}{2n+1}\)
Ta có : \(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
ta được \(\dfrac{1}{1.3}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}\right);\dfrac{1}{3.5}=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}\right);\dfrac{1}{5.7}=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)
\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\) vậy \(S=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{n}{2n+1}\)
Dat A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{13.15}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{13.15}\)
= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-....+\dfrac{1}{13}-\dfrac{1}{15}\)
= 1-\(\dfrac{1}{15}=\dfrac{14}{15}\)
=> A=\(\dfrac{7}{15}\)
Ta co : \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
=> \(\dfrac{7}{15}x-\dfrac{7}{15}+\dfrac{7}{15}=\dfrac{3}{5}x\)
=> \(\dfrac{7}{15}x-\dfrac{3}{5}x=0\)
=> x\(\left(\dfrac{7}{15}-\dfrac{3}{5}\right)=0\)
=> x\(\left(-\dfrac{2}{15}\right)=0\)
=> x=0
\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=> \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{7}{15}x-\dfrac{7}{15}=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{7}{15}x-\dfrac{3}{5}x=\dfrac{-7}{15}+\dfrac{7}{15}\)
<=> \(\dfrac{-2}{15}x=0\)
<=> \(x=0\)
Vậy: \(s=\left\{0\right\}.\)
1)\(2a^4+1\ge2a^3+a^2\)
\(\Leftrightarrow2a^4-2a^3-a^2+1\ge0\)
\(\Leftrightarrow\left(a^4-2a^3+a^2\right)+\left(a^4-2a^2+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-a\right)^2+\left(a^2-1\right)^2\ge0\)(luôn đúng)
"="<=>a=1
Ta có:\(2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\)
\(2A=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{9\cdot11}\right)\)
\(B=\dfrac{4}{1\cdot3}\cdot\dfrac{9}{2\cdot4}\cdot...\cdot\dfrac{100}{9\cdot11}\)
\(B=\dfrac{2\cdot2\cdot3\cdot3\cdot...\cdot10\cdot10}{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}\)
\(B=\dfrac{20}{11}\)
\(\Rightarrow11< 2x< 20\)
\(\Rightarrow x\in\left\{6;7;8;9\right\}\)
\(1-\dfrac{3}{n\left(n+2\right)}=\dfrac{n\left(n+2\right)-3}{n\left(n+2\right)}=\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow M=\dfrac{1.5}{2.4}.\dfrac{2.6}{3.5}.\dfrac{3.7}{4.6}...\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{5.6.7...\left(n+3\right)}{4.5.6...\left(n+2\right)}\)
\(=\dfrac{1}{n}.\dfrac{n+3}{4}=\dfrac{n+3}{4n}=\dfrac{1}{4}+\dfrac{3}{4n}>\dfrac{1}{4}\) (đpcm)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)
\(=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)