K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt A=1+2+3+4+...+n

số số hạng là:

(n-1):2+1

tổng của A là:

(n+1):2.[(n-1):2+1]

5 tháng 12 2019

A=1+2+3+...+n 

2A =(1+2+3+...+n)+(1+2+3+..+n)

      =(1+n)+(2+n-1)+.+(n-1+2)+(n+1)

      =(n+1) x n

=> A=(n+1) x n/2

B=2+4+6+8...+2.n

  =2 x (1+2+3+..+n)

    =2 x A

  =2 x (n+1) x n/2

 =(n+1) x n

C=1+3+5+7..+(2n+1)

2C=(1+3+5+7..+(2n+1))+(1+3+5+7..+(2n+1))

= (1+2n+1)+(3+2n-1)+...+(2n-1+3)+(2n+1+1)

=(2n+2) x n 

=2 x (n+1) x n

C= (n+1) x n

28 tháng 8 2016

Áp dụng công thức tính dãy số : [( số cuối - số đầu ) : khoảng cách + 1] x ( số cuối + số đầu) : 2

Ta có :

a) 1 + 2 + 3 + 4 + ..... + n = [ ( n - 1) : 1 + 1 ] x ( n + 1) : 2 = n x ( n + 1) : 2

28 tháng 8 2016

có ai ko giúp mik vs

28 tháng 8 2016

tim cái j 

27 tháng 5 2017

toàn là n , chắc là tìm n đó bạn

3 tháng 7 2015

ta tính các tổng theo công thức:

tổng có số các số hạng là: (số đầu - số cuối) : khoảng cách +1

giá trị của tổng: (số đầu+ cuối). số số hạng :2

áp dụng tính

a) số số hạng: (n-1):1+1=n-1

giá trị: \(\left(n+1\right)\left(n-1\right):2=\frac{\left(n^2-1\right)}{2}\)

b)  \(=\left(2n-1+1\right).\left(\frac{2n-1-1}{2}+1\right):2=2n\frac{2n}{2}:2=n^2\)

c) \(=\left(2n+2\right)\left(\frac{2n-2}{2}+1\right)=2\left(n+1\right)2n:2=2n\left(n+1\right)\)

5 tháng 10 2016

đúng rồi đó bn nhưng cách kafm giống lớp 8 quá

17 tháng 9 2019

a=1+2+3+4+...+n ( co n so hang)

=> a= \(\frac{\left(n+1\right).n}{2}\)

b=1+3+5+7+...+99(50 so hang ) 

=> b=\(\frac{\left(99+1\right).50}{2}=2500\)

c=2+4+6+8+...+100 (50 so hang)

=> c=\(\frac{\left(100+2\right).50}{2}=2550\)

16 tháng 8 2015

1+2+3+.................+n=(n+1).n/2

1+3+5+7+...........................+(2n-1)=(1+2n-1).n/2=2n.n/2=n.n

2+4+6+.................................+2n=(2n+2).n/2=n.(n+1)