K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

bó tay kkk

22 tháng 8 2017

B = 6 + 6^3 + 6^5 + ... + 6^2015

=> 6^2.B = 6^2(6 + 6^3 + 6^5 + ... + 6^2015

=> 36B = 6^2.6 + 6^3.6 + 6^5.6 + ... + 6^2015 .6 

=> 36B = 6^3 + 6^4 + 6^6 + ... + 6^2016

Lấy 36B trừ đi B, ta có:

     35B = 6^2016 - 6 

=> B = (6^2016 - 6)/35

còn cần không bạn, mk làm cho

9 tháng 3 2019

A= 3/10

B= 1/20

C= 73/84

23 tháng 4 2020

kq

a,77/30

b,35/24

c,

4 tháng 8 2015

a) \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}\)

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)

\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)

\(2A=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+...+\left(\frac{1}{100}-\frac{1}{102}\right)\)

\(2A=\frac{1}{2}-\frac{1}{102}\)

\(2A=\frac{25}{51}\)

\(A=\frac{25}{51}:2\)

\(A=\frac{25}{102}\)

Vậy \(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}=\frac{25}{102}\)

 

 

b) \(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}\)

\(B=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

\(B=3.\left[\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\right]\)

\(B=3.\left(\frac{1}{1}-\frac{1}{2016}\right)\)

\(B=3.\frac{2015}{2016}\)

\(B=\frac{2015}{672}\)

Vậy \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}=\frac{2015}{672}\)

 

 

 

 

 

 

6 tháng 8 2017

A)   (-3/4 + 5/13):2/7-(2/1/2+8/13):2/7

\(=\)

\(=\)

6 tháng 8 2017

B và C đâu bạn

6 tháng 5 2015

a)\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}\)

Đặt \(C=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{6}+\frac{1}{6}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+0+0+...+0-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{12}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{2}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{6}\)

\(\Rightarrow C=\frac{1}{6}:\frac{1}{2}\)

\(\Rightarrow C=\frac{1}{6}\cdot2\)

\(\Rightarrow C=\frac{2}{6}=\frac{1}{3}\)