Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)
\(\dfrac{2022\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{\left(2021+1\right)\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2022}{2023\times2021+2022}\)
= 1
\(...=1+1+...+1+1\)
Số số 1 là :
\(\left(2022-2\right):2+1+1=1012\left(số\right)\)
Vậy kết quả là \(1x1012=1012\)
\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)
\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)
Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)
Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.
\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )
\(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )
Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)
\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)
\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)
Do : \(\dfrac{36}{42}>\dfrac{35}{42}\) nên \(\dfrac{6}{7}>\dfrac{5}{6}\)
(1/2 +1/3+1/4+...1/2022)x(5/6 -1/3:2/5)
=(1/2 +1/3+1/4+...1/2022)x 0
= 0
Tham khảo:
(1/2 +1/3+1/4+...1/2022)x(5/6 -1/3:2/5)
=(1/2 +1/3+1/4+...1/2022)x 0
= 0
`2022+2022:1/3+2022+2022:1/5`
`=2022+2022xx3+2022+2022xx5`
`=2022xx(1+3+1+5)`
`=2022xx10=20220`
nếu các bạn trả lời phép tính của mình thì mong các vạn ghi tất cả các bước làm và phép tính ra ạ ><
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)
\(\dfrac{2}{5}+\dfrac{1}{4}=\dfrac{8}{20}+\dfrac{5}{20}=\dfrac{13}{20}\)
\(\dfrac{1}{3}+\dfrac{3}{5}=\dfrac{5}{15}+\dfrac{9}{15}=\dfrac{14}{15}\)
\(\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
\(\dfrac{1}{8}+\dfrac{5}{6}=\dfrac{3}{24}+\dfrac{20}{24}=\dfrac{23}{24}\)