Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_{n-1}=\frac{1}{1+2+3+...+n}=\frac{2}{n\left(n+1\right)}\)=>\(1-a_{n-1}=1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)........\left(1-\frac{2}{2006.2007}\right)\)
\(=\left(\frac{1.4}{2.3}\right)\left(\frac{2.5}{3.4}\right)\left(\frac{3.6}{4.5}\right)........\left(\frac{2005.2008}{2006.2007}\right)\)\(=\frac{\left(1.2.3......2005\right)\left(4.5.6.....2008\right)}{\left(2.3.4.....2006\right)\left(3.4.5....2007\right)}=\frac{1.2008}{2006.3}=\frac{1004}{3009}\)
- Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{2006^2}\)
- Ta có: \(1=1\)
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(................\)
\(\frac{1}{2006^2}>\frac{1}{2006.2007}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{2006.2007}\)
\(\Leftrightarrow A>1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{2006}-\frac{1}{2007}\right)\)
\(\Leftrightarrow A>1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-...-\frac{1}{2006}+\frac{1}{2007}\)
\(\Leftrightarrow A>1+\frac{1}{2007}=\frac{2008}{2007}\)mà \(\frac{2008}{2007}>1>\frac{1}{2006}\)
\(\Rightarrow A>\frac{1}{2006} \left(ĐPCM\right)\)
^_^ Chúc bạn hok tốt ^_^
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)