K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

B=1/1x4+1/4x3+1/3x8+...+1/7x16+1/16x9+1/9x20

2B=2x(1/4+1/12+1/24+...+1/112+1/144+1/180

2B=2/8+2/24+2/48+...+2/224+2/288+2/360

2B=2/2x4+2/4x6+2/6x8+...+2/14x16+2/16x18+2/18x20

2B=1/2-1/4+1/4-1/6+1/6-1/8+...+1/14-1/16+1/16-1/18+1/18-1/20

2B=1/2-1/20

2B=9/20

B=9/20:2

B=9/40

 

Bài làm

       \(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)

\(=\frac{84}{12}+\left(\frac{7}{12}-\frac{6}{12}+\frac{36}{12}\right)-\left(\frac{1}{12}+\frac{60}{12}\right)\)

\(=\frac{84}{12}+\frac{37}{12}-\frac{61}{12}\)

\(=\frac{60}{12}\)

\(=5\)

# Chúc bạn học tốt #

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

17 tháng 6 2016

=> \(11.6^{x-1}+2.6^{x-1+2}=11.6^{11}+2.6^{11+2}\)

=>\(11.6^{x-1}+2.6^{x-1}.6^2=11.6^{11}+2.6^{11}.6^2\)

=>\(6^{x-1}\left(11+2.6^2\right)=6^{11}\left(11+2.6^2\right)\)

=>\(6^{x-1}=6^{11}\)

=>\(x-1=11\)

=>\(x=12\)

Tíck giùm mik nha !

18 tháng 9 2021

Bài 1:

\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)

\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bài 2: 

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)

 

18 tháng 9 2021

thanks bạn nhayeu

5 tháng 8 2023

\(B=1-\left(\dfrac{1}{2.6}+\dfrac{1}{4.9}+\dfrac{1}{6.12}+...+\dfrac{1}{35.67}+\dfrac{1}{38.60}\right)\left(1\right)\)

Đặt \(S=\dfrac{1}{2.6}+\dfrac{1}{4.9}+\dfrac{1}{6.12}+...+\dfrac{1}{35.67}+\dfrac{1}{38.60}\)

\(S=\dfrac{1}{2.3.\left(1.2\right)}+\dfrac{1}{2.3.\left(2.3\right)}+\dfrac{1}{2.3.\left(3.4\right)}+...+\dfrac{1}{2.3.\left(18.19\right)}+\dfrac{1}{2.3.\left(19.20\right)}\)

\(S=\dfrac{1}{6}.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\)

\(S=\dfrac{1}{6}.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(S=\dfrac{1}{6}.\left(1-\dfrac{1}{20}\right)=\dfrac{1}{6}.\dfrac{19}{20}=\dfrac{19}{120}\)

\(\left(1\right)\Rightarrow B=1-\dfrac{19}{120}=\dfrac{101}{120}\)

5 tháng 8 2023

Đạ biểu thức trong dấu ngoặc đơn là A

\(A=\dfrac{1}{2.1.3.2}+\dfrac{1}{2.2.3.3}+\dfrac{1}{2.3.3.4}+\dfrac{1}{2.4.3.5}+...+\dfrac{1}{2.18.3.19}+\dfrac{1}{2.19.3.20}=\)

\(=\dfrac{1}{2.3}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)=\)

Đặt biểu thức trong dấu ngoặc đơn là C

\(C=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{20-19}{19.20}=\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\)

\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)

\(\Rightarrow B=1-\dfrac{1}{6}.C=1-\dfrac{1}{6}.\dfrac{19}{20}=\dfrac{101}{120}\)