K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Ta có:  2 x − 5 ≥ 0 2 x 2 − 7 x + 5 ≥ 0 ⇒ 2 x − 5 + 2 x 2 − 7 x + 5 ≥ 0

Dấu “=” xảy ra khi và chỉ khi  2 x − 5 = 0 2 x 2 − 7 x + 5 = 0 ⇔ x = 5 2 x = 1 ∨ x = 5 2 ⇔ x = 5 2

Đáp án cần chọn là: B

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:

$t^2-2-2t-m-3=0$

$\Leftrightarrow t^2-2t-(m+5)=0(*)$

Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)

Đáp án B.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({x^2} + x - 6 \le 0\) là một bất phương trình bậc hai một ẩn

Vì \({2^2} + 2 - 6 = 0\) nên \(x = 2\) là nghiệm của bất phương trình trên

b) \(x + 2 > 0\) không là bất phương trình bậc hai một ẩn

c) \( - 6{x^2} - 7x + 5 > 0\) là một bất phương trình bậc hai một ẩn

Vì \( - {6.2^2} - 7.2 + 5 =  - 33 < 0\) nên \(x = 2\) không là nghiệm của bất phương trình trên

Phần 1: Đại sốCâu 1 (2đ): Xét dấu các biểu thức sau:a.f x x     3 4; c.    2f x x x x     1 2 5 2 .b. 2f x x x    9 6 1; d.  22 52xf xx x.Câu 2 (4đ): Giải các bất phương trình sau:a.  23 4 4 0 x x   ; c.  21 2 503x xx .b. 22 4 4 0 x x x   ; d. 225 2 302x xx x.Câu 3 (1đ): Xác định miền nghiệm của bất phương...
Đọc tiếp

Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x     3 4

; c.

    

2

f x x x x     1 2 5 2 .

b.
 
2
f x x x    9 6 1

; d.

  2
2 5
2
x

f x
x x



.

Câu 2 (4đ): Giải các bất phương trình sau:
a.
  
2
3 4 4 0 x x   

; c.

  
2
1 2 5
0

3
x x
x
 

.

b.
 
2
2 4 4 0 x x x   

; d.

 
2
2
5 2 3
0
2
x x
x x


.

Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:

2 3 1 0. x y   

Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết

A B và C 1; 4 , 3; 1 6; 2 .       
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.   
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0     x y

2
d : 2 3 0.

0
11 tháng 12 2021

Đề sai rồi bạn

29 tháng 8 2019

Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại. Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.

Đáp án: C

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng: A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\) 2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là; A.vô số B.4 C.8 D.0 3. Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{{}\begin{matrix}5x-2< 4x+5\\x^2< \left(x+2\right)^2\end{matrix}\right.\) bằng: A.21 B.27 C.28 D.29 4. Cho bất phương trình \(\left\{{}\begin{matrix}\left(1-x\right)^2\le8-4x+x^2\\\left(x+2\right)^3< x^3+6x^2+13x+9\end{matrix}\right.\) Tổng số nghiệm nguyên lớn nhất và nghiệm nguyên nhỏ nhất của bất phương trình bằng: A.2 B.3 C.6 D.7 5. Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m 2\end{matrix}\right.\) có nghiệm khi và chỉ khi: A.m<\(-\frac{3}{2}\) B.m\(\le\)\(-\frac{3}{2}\) C.m>\(-\frac{3}{2}\) D.m\(\ge-\frac{3}{2}\) XIN GIẢI RA TỰ LUẬN GIÚP EM ...
Đọc tiếp

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng:

A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\)

2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là;

A.vô số B.4 C.8 D.0

3. Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{{}\begin{matrix}5x-2< 4x+5\\x^2< \left(x+2\right)^2\end{matrix}\right.\) bằng:

A.21 B.27 C.28 D.29

4. Cho bất phương trình \(\left\{{}\begin{matrix}\left(1-x\right)^2\le8-4x+x^2\\\left(x+2\right)^3< x^3+6x^2+13x+9\end{matrix}\right.\)

Tổng số nghiệm nguyên lớn nhất và nghiệm nguyên nhỏ nhất của bất phương trình bằng:

A.2 B.3 C.6 D.7

5. Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi:

A.m<\(-\frac{3}{2}\) B.m\(\le\)\(-\frac{3}{2}\) C.m>\(-\frac{3}{2}\) D.m\(\ge-\frac{3}{2}\)

XIN GIẢI RA TỰ LUẬN GIÚP EM

2
NV
26 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x>2\\\frac{5}{2}+3\le x+\frac{3}{2}x\\2x\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>2\\\frac{5}{2}x\ge\frac{11}{2}\\x\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\frac{11}{5}\le x\le\frac{5}{2}\)

\(\Rightarrow a+b=\frac{11}{5}+\frac{5}{2}=D\)

2.

\(\left\{{}\begin{matrix}6x-4x>7-\frac{5}{7}\\4x-2x< 25-\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{22}{7}\\x< \frac{47}{4}\end{matrix}\right.\)

\(\Rightarrow\frac{22}{7}< x< \frac{47}{4}\Rightarrow x=\left\{4;5...;11\right\}\) có 8 giá trị

NV
26 tháng 2 2020

3.

\(\left\{{}\begin{matrix}5x-4x< 5+2\\x^2< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-1\end{matrix}\right.\)

\(\Rightarrow-1< x< 7\Rightarrow x=\left\{0;1;...;6\right\}\)

\(\Rightarrow\sum x=1+2+...+6=21\)

4.

\(\left\{{}\begin{matrix}x^2-2x+1\le8-4x+x^2\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\le7\\x\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le x\le\frac{7}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x_{min}=-1\\x_{max}=3\end{matrix}\right.\) \(\Rightarrow S=2\)

5.

\(\left\{{}\begin{matrix}x>\frac{1}{2}\\x< m+2\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi:

\(m+2>\frac{1}{2}\Rightarrow m>-\frac{3}{2}\)

NV
24 tháng 12 2020

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

6 tháng 1 2021

(x-1)(x-3) =x^2-4x+3 chứ ạ?