Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(10^{12}+1=1000000000001\) không chia hết cho 3 và 9 suy ra \(10^{12}+1\) không chia hết cho 3 và 9
\(A=10^{12}+1\)
\(B=10^{12}+2\)
\(C=10^{12}+7\)
\(D=10^{12}+8\)
\(\Rightarrow A+B+C+D=4.10^{12}+\left(1+2+7+8\right)=4.10^{12}+18\)
Tổng các chữ số của tổng này là \(1+1+8=10\) không chia hết cho 3 nên không chia hết cho 9
Vậy \(A+B+C+D⋮̸\left(3;9\right)\)
A có tổng các chữ số là 2 nên A không chia hết cho 3 và 9
B có tổng các chữ số là 3 nên B chia hết cho 3 mà không chia hết cho 9
C có tổng các chữ số là 8 nên không chia hết cho 3 và 9
D có tổng các chữ số là 9 nên chia hết cho cả 3 và 9
a) \(\left\{{}\begin{matrix}2.3.4.5.6⋮2\\82⋮2\end{matrix}\right.\)\(\Rightarrow2.3.4.5.6+82⋮2\)
\(\left\{{}\begin{matrix}2.3.4.5.6⋮5\\82⋮̸5\end{matrix}\right.\)\(\Rightarrow2.3.4.5.6+82⋮̸5\)
b) \(\left\{{}\begin{matrix}2.3.4.5.6⋮2\\95⋮̸2\end{matrix}\right.\)\(\Rightarrow2.3.4.5.6-95⋮̸2\)
\(\left\{{}\begin{matrix}2.3.4.5.6⋮5\\95⋮5\end{matrix}\right.\)\(\Rightarrow2.3.4.5.6-95⋮5\)
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
Bài 1:
a) 120 ⋮ 12, 36 ⋮ 12
⇒120 + 36 ⋮ 12
b) 120a ⋮ 12, 36b ⋮ 12
⇒120a + 36b ⋮ 12
- Có 120 chia hết cho 12
=>120a chia hết cho 12
- Có 36 chia hết cho 12
=>36b chia hết cho 12
~HT~
có vị 14.30+22.36=1212 mà 1212 :12=101