K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

Bạn ghi lại đề đi bạn

23 tháng 10 2023

Ok chưa bạn

 

4 tháng 9 2020

a) Ta có: đồ thị hàm số y=ax+b đi qua điểm A (2:1) 

=> 2a+b=1 (1)

   Lại có: đồ thị cắt trục tung tại điểm có tung độ bằng 5

=> b=5 (2)

Từ (1) và (2) ta có: 2a+5=1 

                          => a= -2

b) Gía trị của m để (P) và (d) có 1 điểm chung duy nhất là 

       3x=2x+m

     => 3x2-2x-m

    \(\Delta'=1+3m\) 

       => m= -1/3

Tọa độ điểm chung là:

   3x2=2x-1/3

  => 3x2-2x+1/3

  => x=1/3

 thay x=1/3 vào vào parabol (P) ta đc: y= 3(1/3)2

                                                       y=1/3

 => Tọa độ ddiemr chung là (1/3; 1/3)

b: Thay x=-2 và y=1/2 vào (d), ta được:

-2m+4+3m+1=1/2

=>m+5=1/2

hay m=-9/2

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

21 tháng 9 2023

a) \(\left(d_1\right):y=-2x-2\)

\(\left(d_2\right):y=ax+b\)

\(\left(d_2\right)//d_1\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left(d_2\right):y=-2x+b\)

\(M\left(2;-2\right)\in\left(d_2\right)\Leftrightarrow-2.2+b=-2\)

\(\Leftrightarrow b=2\) \(\left(thỏa.đk.b\ne-2\right)\)

Vậy \(\left(d_2\right):y=-2x+2\)

b) \(\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=-2x+2\end{matrix}\right.\)

loading...

c) \(\left(d_3\right):y=x+m\)

\(\left(d_1\right)\cap\left(d_3\right)=A\left(x;0\right)\Leftrightarrow\left\{{}\begin{matrix}y=x+m\\y=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0=x+m\\0=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\x=-1\end{matrix}\right.\)

\(\Rightarrow\left(d_3\right):y=x+1\)

 

loading...

 

19 tháng 9 2023

a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)

loading...

b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

\(\Rightarrow M\left(-5;5\right)\)

c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)

\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)

\(\left(d'\right):y=-x\Rightarrow k_1-1\)

\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)

\(\Rightarrow\widehat{M}\sim18^o\)

19 tháng 9 2023

d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)

\(\Leftrightarrow y=-2.0-5=-5\)

\(\Rightarrow A\left(0;-5\right)\)

\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)

\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)

\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta MOA:\)

\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)

\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)

\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)

\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)

\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)

\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)

Diện tích \(\Delta MOA:\)

\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)