K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

đây là toán tổ hợp rời rạc nên là bài của ĐT nên chắc em hiểu khái niệm về tổ hợp và chỉnh hợp chập k của n rồi nhỉ?

Ta sẽ có bài tổng quát sau nhé: 

Cho hcn nx(n(n-1)+1) được tô bởi 2 màu xanh đỏ, Chứng minh rằng luôn tồn tại 1 hcn đặc biệt mà với mọi cách tô ta luôn có 4 góc cùng màu

CM: với n lẻ, (TH n chẵn CM tương tự)

Trong 1 cột luôn có ít nhất \(\frac{n+1}{2}\)ô cùng màu, và có \(\frac{n+1}{2}.C^{\frac{n+1}{2}}_n\)cách sắp xếp chúng trong cột 1

Mà có tất cả \(n^3-n^2+n\)ô => sẽ có ít nhất \(\frac{n^3-n^2+n+1}{2}\)ô cùng màu

do vậy trong n(n-1) cột còn lại luôn tồn tại 1 cột có cách tô màu cùng với cách tô ở cột 1

đó chính là hình chữ nhật cần tìm

ÁP DỤNG BÀI NÀY:  ta dễ dàng tìm ra n=7

lời giải tổng quát có thể hơi khó hiểu nhưng áp dụng cụ thể cho bài này em sẽ thấy dễ hieur nhé!

14 tháng 4 2017

xem đề thi chuyên toán 10 đi

10 tháng 3 2016

Oh my god !!!!! xin lỗi nhé chỉ mới học lớp 4 thôi

    Thông cảm nha !!!!!!

10 tháng 3 2016

ko có ai trả lời đâu vì toán quá khó cơ nhưng tuj làm được làm biếng viết quá thông cảm nha