K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:

- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.

- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.

- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.

- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.

- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.

Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.

b) Với phương trình 3x + 5y = -3:

- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.

- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.

- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.

- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.

- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.

Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.


29 tháng 1 2021

a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:

- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.

- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.

- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.

- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.

- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.

Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.

b) Với phương trình 3x + 5y = -3:

- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.

- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.

- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.

- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.

- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.

Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

30 tháng 6

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

 

17 tháng 12 2019

a) Xét cặp (-2; 1). Thay x = -2 ; y = 1 vào phương trình 5x + 4y = 8 ta được :

5x + 4y = 5.(-2) + 4.1 = -10 + 4 = -6 ≠ 8

⇒ cặp số (-2; 1) không là nghiệm của phương trình 5x + 4y = 8.

Xét cặp(0; 2). Thay x = 0 ; y = 2 vào phương trình 5x + 4y = 8 ta được

5x + 4y = 5.0 + 4.2 = 8

⇒ cặp số (0; 2) là nghiệm của phương trình 5x + 4y = 8.

Xét cặp (-1; 0). Thay x = -1 ; y = 0 vào phương trình 5x - 4y = 8 ta được:

5x + 4y = 5.(-1) + 4.0 = -5 ≠ 8

⇒ cặp số (-1; 0) không là nghiệm của phương trình 5x + 4y = 8.

Xét cặp (1,5 ; 3). Thay x = 1,5 ; y = 3 vào phương trình 5x + 4y = 8 ta được

5x + 4y = 5.1,5 + 4.3 = 7,5 + 12 = 19,5 ≠ 8

⇒ (1,5; 3) không là nghiệm của phương trình 5x + 4y = 8.

Xét cặp (4;-3).Thay x = 4 ; y = -3 vào phương tình 5x + 4y = 8 ta được:

5x + 4y = 5.4 + 4.(-3) = 20 – 12 = 8

⇒ (4; -3) là nghiệm của phương trình 5x + 4y = 8.

Vậy có hai cặp số (0; 2) và (4; -3) là nghiệm của phương trình 5x + 4y = 8.

b) Xét cặp số (-2; 1).Thay x = -2 ; y = 1 vào phương trình 3x + 5y = -3 ta được:

3x + 5y = 3.(-2) + 5.1 = -6 + 5 = -1 ≠ -3

⇒ (-2; 1) không là nghiệm của phương trình 3x + 5y = -3.

Xét cặp số (0; 2) . Thay x = 0 ; y = 2 vào phương trình 3x + 5y = -3 ta được:

3x + 5y = 3.0 + 5.2 = 10 ≠ -3

⇒ (0; 2) không là nghiệm của phương trình 3x + 5y = -3.

Xét cặp (-1; 0).Thay x = -1 ; y = 0 vào phương trình 3x + 5y = -3 ta được:

3x + 5y = 3.(-1) + 5.0 = -3

⇒ (-1; 0) là nghiệm của phương trình 3x + 5y = -3. .

Xét cặp (1,5; 3). Thay x = 1,5 ; y = 3 vào phương trình 3x + 5y = -3 ta được:

3x + 5y = 3.1,5 + 5.3 = 4,5 + 15 = 19,5 ≠ -3

⇒ (1,5; 3) không là nghiệm của phương trình 3x + 5y = -3.

Xét cặp (4; -3). Thay x = 4 ; y = -3 vào phương trình 3x + 5y = -3 ta được:

3x + 5y = 3.4 + 5.(-3) = 12 – 15 = -3

⇒(4; -3) là nghiệm của phương trình 3x + 5y = -3.

Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.

NV
26 tháng 2 2019

\(VT=\left[\left(x-2\right)^2+4\left(x+y+1\right)\right]\left[\left(y-2\right)^2+4\left(x+y+1\right)\right]\)

\(VT=\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+16\left(x+y+1\right)^2\)

\(VP=\left[4\left(x+y+1\right)-\left(x-y\right)\right]\left[4\left(x+y+1\right)+\left(x-y\right)\right]\)

\(VP=16\left(x+y+1\right)^2-\left(x-y\right)^2\)

Ta có \(VT=VP\)

\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]=-\left(x-y\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+\left(x-y\right)^2=0\) (1)

Nhận xét:

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(x-2\right)^2\left(y-2\right)^2\ge0\\x;y\ge0\Rightarrow4\left(x+y+1\right)>0\Rightarrow4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]\ge0\end{matrix}\right.\)

Vậy (1) xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2\left(y-2\right)^2=0\\\left(x-2\right)^2+\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=2\)

Vậy phương trình đã cho có nghiệm duy nhất \(x=y=2\)

12 tháng 4 2022

a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)

Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)

 \(\Rightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)

c.\(1,2x^3-x^2-0,2x=0\)

\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)

8 tháng 1 2021

1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)

=> Hệ có vô số nghiệm.

3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

18 tháng 8 2023

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau: a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\) bài 2: cho hệ phương trình...
Đọc tiếp

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau:

a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\)

bài 2: cho hệ phương trình \(\left\{{}\begin{matrix}x+y=1\\mx+y=2m\end{matrix}\right.\) xác định các giá trị của tham số m để hệ phương trình:

a) có nghiệm duy nhất b) vô nghiệm

c) vô số nghiệm

bài 3: hãy kiểm tra xem mỗi cặp số sau có là nghiệm của hệ phương trình tương ứng hay ko ?

a) (1;2) và \(\left\{{}\begin{matrix}3x-5y=-7\\2x+y=4\end{matrix}\right.\) b) (-2;5) và \(\left\{{}\begin{matrix}2x-3y=-19\\-3x+2y=7\end{matrix}\right.\)

bài 4: cho hệ phương trình \(\left\{{}\begin{matrix}2mx+y=m\\x-my=-1-6m\end{matrix}\right.\) Tìm các giá trị của tham số m để cặp số ( -2;1) là nghiệm của hệ phương đã cho.

bài 5: cho 2 phương trình đường thẳng:

d1: 2x-y=5 và d2: x-2y=1

a) vẽ hai đường thẳng d1 và d2 trên cùng một hệ trục tọa độ.

b) từ đò thị của d1 và d2 tìm nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}2x-y=5\\x-2y=1\end{matrix}\right.\)

c) cho đường thẳng d3: mx+(2m-1)y=3. Tìm các giá trị của tham số m để ba đường thẳng d1, d2 và d3 đồng quy.

cảm ơn mn nhé !

1
17 tháng 12 2022

Bài 5:

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)

c; THay x=3 và y=1 vào (d3), ta được:

3m+1(2m-1)=3

=>5m-1=3

=>5m=4

=>m=4/5

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y