Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a) Xét cặp (-2; 1). Thay x = -2 ; y = 1 vào phương trình 5x + 4y = 8 ta được :
5x + 4y = 5.(-2) + 4.1 = -10 + 4 = -6 ≠ 8
⇒ cặp số (-2; 1) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp(0; 2). Thay x = 0 ; y = 2 vào phương trình 5x + 4y = 8 ta được
5x + 4y = 5.0 + 4.2 = 8
⇒ cặp số (0; 2) là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (-1; 0). Thay x = -1 ; y = 0 vào phương trình 5x - 4y = 8 ta được:
5x + 4y = 5.(-1) + 4.0 = -5 ≠ 8
⇒ cặp số (-1; 0) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (1,5 ; 3). Thay x = 1,5 ; y = 3 vào phương trình 5x + 4y = 8 ta được
5x + 4y = 5.1,5 + 4.3 = 7,5 + 12 = 19,5 ≠ 8
⇒ (1,5; 3) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (4;-3).Thay x = 4 ; y = -3 vào phương tình 5x + 4y = 8 ta được:
5x + 4y = 5.4 + 4.(-3) = 20 – 12 = 8
⇒ (4; -3) là nghiệm của phương trình 5x + 4y = 8.
Vậy có hai cặp số (0; 2) và (4; -3) là nghiệm của phương trình 5x + 4y = 8.
b) Xét cặp số (-2; 1).Thay x = -2 ; y = 1 vào phương trình 3x + 5y = -3 ta được:
3x + 5y = 3.(-2) + 5.1 = -6 + 5 = -1 ≠ -3
⇒ (-2; 1) không là nghiệm của phương trình 3x + 5y = -3.
Xét cặp số (0; 2) . Thay x = 0 ; y = 2 vào phương trình 3x + 5y = -3 ta được:
3x + 5y = 3.0 + 5.2 = 10 ≠ -3
⇒ (0; 2) không là nghiệm của phương trình 3x + 5y = -3.
Xét cặp (-1; 0).Thay x = -1 ; y = 0 vào phương trình 3x + 5y = -3 ta được:
3x + 5y = 3.(-1) + 5.0 = -3
⇒ (-1; 0) là nghiệm của phương trình 3x + 5y = -3. .
Xét cặp (1,5; 3). Thay x = 1,5 ; y = 3 vào phương trình 3x + 5y = -3 ta được:
3x + 5y = 3.1,5 + 5.3 = 4,5 + 15 = 19,5 ≠ -3
⇒ (1,5; 3) không là nghiệm của phương trình 3x + 5y = -3.
Xét cặp (4; -3). Thay x = 4 ; y = -3 vào phương trình 3x + 5y = -3 ta được:
3x + 5y = 3.4 + 5.(-3) = 12 – 15 = -3
⇒(4; -3) là nghiệm của phương trình 3x + 5y = -3.
Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.
\(VT=\left[\left(x-2\right)^2+4\left(x+y+1\right)\right]\left[\left(y-2\right)^2+4\left(x+y+1\right)\right]\)
\(VT=\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+16\left(x+y+1\right)^2\)
\(VP=\left[4\left(x+y+1\right)-\left(x-y\right)\right]\left[4\left(x+y+1\right)+\left(x-y\right)\right]\)
\(VP=16\left(x+y+1\right)^2-\left(x-y\right)^2\)
Ta có \(VT=VP\)
\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]=-\left(x-y\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+\left(x-y\right)^2=0\) (1)
Nhận xét:
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(x-2\right)^2\left(y-2\right)^2\ge0\\x;y\ge0\Rightarrow4\left(x+y+1\right)>0\Rightarrow4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]\ge0\end{matrix}\right.\)
Vậy (1) xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2\left(y-2\right)^2=0\\\left(x-2\right)^2+\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=2\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=y=2\)
a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)
\(\Rightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)
c.\(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
\(5x^4+10x^2+2y^6+4y^3-6=0\)
\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.
Bài 5:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)
c; THay x=3 và y=1 vào (d3), ta được:
3m+1(2m-1)=3
=>5m-1=3
=>5m=4
=>m=4/5
a/ Ta có
\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)
Ta lại có
\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)
\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)
Áp dụng vào bài toán ta được
\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)
b/
\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)
\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)
\(=\frac{1}{3}\)
Dấu = xảy ra khi x = y
a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:
- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.
- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.
- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.
- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.
- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.
Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.
b) Với phương trình 3x + 5y = -3:
- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.
- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.
- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.
- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.
- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.
Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.
a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:
- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.
- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.
- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.
- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.
- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.
Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.
b) Với phương trình 3x + 5y = -3:
- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.
- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.
- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.
- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.
- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.
Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.