Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}10 + \left( { - 12} \right) = - 2\\ - 2 + \left( { - 12} \right) = - 14\\ - 14 + \left( { - 12} \right) = - 26\\ - 26 + \left( { - 12} \right) = - 38\end{array}\)
Dãy số là cấp số cộng
b) Ta có:
\(\begin{array}{l}\frac{1}{2} + \frac{3}{4} = \frac{5}{4}\\\frac{5}{4} + \frac{3}{4} = 2\\2 + \frac{3}{4} = \frac{{11}}{4}\\\frac{{11}}{4} + \frac{3}{4} = \frac{7}{2}\end{array}\)
Dãy số là cấp số cộng
c) Không xác định được d giữa các số hạng
Dãy số không là cấp số cộng
d) Ta có:
\(\begin{array}{l}1 + 3 = 4\\4 + 3 = 7\\7 + 3 = 10\\10 + 3 = 13\end{array}\)
Dãy số là cấp số cộng
a: Đây là cấp số cộng có công sai là d=-4 vì -3-1=-7-(-3)=(-11)-(-7)=(-15)-(-11)=-4
b,c,e không là cấp số cộng
d: \(u_{n+1}-u_n=2\left(n+1\right)-5-2n+5=2n+2-2n=2\)
=>Đây là cấp số cộng có công sai là d=2
f: \(u_{n+1}-u_n=-3\left(n+1\right)+4+3n-4=-3n-3+3n=-3\)
=>Đây là cấp số cộng có công sai là d=-3
Đáp án đúng là: A
Dãy số 21; – 3; – 27; – 51; – 75 lập thành một cấp số cộng có số hạng đầu là u1 = 21 và công sai d = – 24.
a) Ta có:
\(\begin{array}{l} - 0,5:5 = - 0,1\\0,05:\left( { - 0,5} \right) = - 0,1\\ - 0,005:0,05 = - 0,1\\0,0005:\left( { - 0,005} \right) = - 0,1\end{array}\)
Dãy số là cấp số nhân
b) Ta có:
\(\begin{array}{l}3:\left( { - 9} \right) = - \frac{1}{3}\\\left( { - 1} \right):3 = - \frac{1}{3}\\\frac{1}{3}:\left( { - 1} \right) = - \frac{1}{3}\\ - \frac{1}{9}:\left( {\frac{1}{3}} \right) = - \frac{1}{3}\end{array}\)
Dãy số là cấp số nhân
c) Ta có:
\(\begin{array}{l}8:2 = 4\\32:8 = 4\\64:32 = 2\end{array}\)
Dãy số không là cấp số nhân
a, Cấp số nhân với công bội là q= -0,1
b, Cấp số nhân với công bội q= -1/3
c, Không phải cấp số nhân vì: \(256:64=32:8=8:2\ne64:32\)
a) Dãy số: 3; 7; 11; 15; 19; 23 là cấp số cộng có công sai \(d = 4\).
b) Ta có: \({u_{n + 1}} = 9\left( {n + 1} \right) - 9 = 9n + 9 - 9 = \left( {9n - 9} \right) + 9 = {u_n} + 9\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = 9\).
c) Ta có: \({v_{n + 1}} = a\left( {n + 1} \right) + b = an + a + b = \left( {an + b} \right) + a = {v_n} + a\).
Vậy dãy số \(\left( {{v_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = a\).
1, Dãy a nha với d= 2
2,
\(u_1=3.1+1=4\\ u_2=3.2+1=7\\ d=u_2-u_1=7-4=3\)
a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 = - 1 - 4n\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) = - 1 - 4n - 3 + 4n = - 4\)
Vậy dãy số là cấp số cộng có công sai \(d = - 4\).
b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)
Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).
c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)
Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.
d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} = - \frac{5}{3}\)
Vậy dãy số là cấp số cộng có công sai \(d = - \frac{5}{3}\).
Ta có:
\(-3=1+\left(-4\right)\\ -7=\left(-3\right)+\left(-4\right)\\ -11=\left(-7\right)+\left(-4\right)\\ -15=\left(-11\right)+\left(-4\right)\)
Vậy dãy số trên là cấp số cộng với công sai \(d=-4\)
Các dãy là cấp số công là c;e;f
c: \(u2-u1=u3-u2=u4-u3=u5-u4=0\)
=>Đây là cấp số cộng có công sai là 0
e: \(u_{n+1}-u_n=1-4\left(n+1\right)-4+4n=-4n-4+4n=-4\)
=>Đây là cấp số cộng có công sai là d=-4
f: \(u_{n+1}-u_n\)
\(=-5\left(n+1\right)+2+5n-2\)
=-5n-5+5n
=-5
=>Đây là cấp số cộng có công sai là d=-5
Chọn B
Phương pháp
Các số a, b, c, d lập thành một CSC
⇔ b - a = c - b = d - c
Cách giải
+) Đáp án A ta có:
-3-1=-4; -6-(-3)=-3
⇒ các số trong đáp án A không lập thành CSC.
+) Đáp án B ta có:
-3-1=-4; -7-(-3)=-4
-11-(-7)=-4; -15-(-11)=-4
⇒ các số trong đáp án B lập thành một CSC có công sai d = -4.