Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vì A 1 ; 1 ; − 2 ∈ d nên phương trình của đường thẳng d là: x = 1 + 2 t y = 1 + 6 t z = − 2 + t
Đáp án A
Phương pháp:
Cho ; nhận n 1 → = a 1 ; b 1 ; c 1 ; n 2 → = a 2 ; b 2 ; c 2 lần lượt là các VTPT. Khi đó, góc giữa hai mặt phẳng
α ; β được tính: cos α ; β = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
Cách giải:
(P): x + 2y – 2z +2018 = 0 có 1 VTPT: n 1 → = 1 ; 2 ; - 2
(Q): x + my + (m – 1)z + 2017 = 0 có 1 VTPT: n 2 → = 1 ; m ; m - 1
Góc giữa hai mặt phẳng (P) và (Q):
cos P ; Q = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
=>((P),(Q))min khi và chỉ khi
Khi đó,
Ta thấy:
Đáp án C
Δ : x − 1 3 = y + 2 − 2 = z − 3 1 có véc tơ chỉ phương là u → = 3 ; − 2 ; 1
Phương trình mặt phẳng cần tìm đi qua M và vuông góc với đường thẳng
Δ : x − 1 3 = y + 2 − 2 = z − 3 1 nên nhận u → = 3 ; − 2 ; 1 làm véc tơ pháp tuyến có phương trình là:
3
x
−
3
−
2
y
+
1
+
1
z
−
1
=
0
⇔
3
x
−
2
y
+
z
−
12
=
0
Đáp án là B