Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d
\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)
Thế vào (1):
\(x'-3+3\left(y'+2\right)+1=0\)
\(\Leftrightarrow x'+3y'+4=0\)
Vậy pt ảnh có dạng \(x+3y+4=0\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Gọi M N, lần lượt là ảnh của các điểm A(3;5), B(-1;1) qua phép tịnh tiến theo véc-tơ v=(-1;2) . Tính độ dài MN.
Giải
Phép tịnh tiến theo vecto v biến điểm A thành điểm M là:
\(\left\{{}\begin{matrix}x_M=x_A+x_v=3-1=2\\y_M=y_A+y_v=5+2=7\end{matrix}\right.\)
=> M (2,7).
Phép tịnh tiến theo vecto v biến điểm B thành điểm N là:
\(\left\{{}\begin{matrix}x_N=x_B+x_v=-1-1=-2\\y_N=y_B+y_v=1+2=3\end{matrix}\right.\)
=> N (-2,3).
Độ dài vecto MN bằng: \(\sqrt{\left(x_N-x_M\right)^2+\left(y_N-y_M\right)^2}=\)\(4\sqrt{2}\)
Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v → ( 2 ; 3 )
Do M(x,y) ∈ d nên
3x − 5y + 3 = 0
⇒ 3(x′−2) − 5(y′−3) + 3 = 0
⇔ 3x′ − 5y′ + 12 = 0 (d′)
Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0
Tọa độ A' là:
\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)
Lấy B(0;-2) thuộc (d)
=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)
Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:
c+12-12=0
=>c=0
(C): (x-3)^2+(y-1)^2=9
=>R=3 và I(3;1)
=>I'(5;-5)
=>(C'): (x-5)^2+(y+5)^2=9