K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}x=4+2t\\y=1-5t\end{matrix}\right.\)

Vậy: VTCP là (2;-5) và điểm mà (d1) đi qua là A(4;1)

=>VTPT là (5;2)

Phương trình đường thẳng của (d1) là:

5(x-4)+2(y-1)=0

=>5x-20+2y-2=0

=>5x+2y-22=0

(d2): 2x-5y-14=0

=>(d1) và (d2) vuông góc

13 tháng 2 2017

ĐÁP ÁN B

Đường thẳng qua A và tạo với d1d2 các góc bằng nhau khi vuông góc với phân giác của góc tạo bởi d1d2.

Do vậy số lượng đường thẳng cần tìm là 2.

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

23 tháng 10 2021

Câu 57: A

23 tháng 10 2021

56. \(m>0\)

57. A

21 tháng 9 2017

Đáp án: B

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

AH
Akai Haruma
Giáo viên
28 tháng 4 2022

Lời giải:

Đường thẳng $(d_1)$ có VTPT $(2,-4)$

$\Rightarrow$ VTCP của $(d_1)$: $(4,2)$

VTCP của $(d_2)$: $(m, -m-1)$

Để $(d_1), (d_2)$ vuông góc với nhau khi chỉ khi 2 VTCP của 2 đường thẳng vuông góc với nhau 

$\Leftrightarrow 4m+2(-m-1)=0$

$\Leftrightarrow m=1$

 

NV
25 tháng 4 2020

a. Tọa độ A thỏa mãn:

\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)

\(\Rightarrow A\left(7;-3\right)\)

b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt

Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)

Pt tổng quát:

\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)

Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)

Pt tổng quát:

\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)

3 tháng 9 2019

22 tháng 2 2017

Cho 2 đường thẳng cắt nhau d 1 :   a 1   x   +   b 1 y   +   c 1   = 0   v à   d 2   :   a 2 x   +   b 2 y   +   c 2 =   0 .

Lấy điểm  M(x, y) bất kì trên đường phân giác của góc tạo bởi 2 đường thẳng d1; d2.

Theo tính  chất  đường  phân giác của góc ta có:

d ( M ;    d 1 ) =    d ( M ; d 2 ) ⇔ a 1 x + ​ b 1 y + c 1 a 1 2 + ​ b 1 2 =    a 2 x + ​ b 2 y + c 2 a 2 2 + ​ b 2 2 ⇔ a 1 x + ​ b 1 y + c 1 a 1 2 + ​ b 1 2 =   ±   a 2 x + ​ b 2 y + c 2 a 2 2 + ​ b 2 2

ĐÁP ÁN B