Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vecto MN=(1;2)
=>VTPT là (-2;1)
Phương trình MN là:
-2(x-3)+1(y+1)=0
=>-2x+6+y+1=0
=>-2x+y+7=0
Phương trình tham số là:
x=3+t và y=-1+2t
\(\left(C\right):x^2+y^2+4x-6y-12=0\)
\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)
\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)
Kẻ IH vuông góc với AB.
\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)
Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)
\(\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)
Đường tròn (C) tâm \(I\left(1;1\right)\) bán kính \(R=4\)
\(\overrightarrow{IA}=\left(1;-1\right)\Rightarrow IA=\sqrt{2}\) (chà, rắc rối rồi, do \(\dfrac{IA}{R}< \dfrac{\sqrt{2}}{2}\) nên tam giác IMN không bao giờ có thể vuông được)
Ta có: \(S_{\Delta IMN}=\dfrac{1}{2}IM.IN.sin\widehat{MIN}=\dfrac{1}{2}R^2.sin\widehat{MIN}\)
\(\Rightarrow S_{IMN-max}\) khi \(sin\widehat{MIN}\) đạt max
Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH\le IA\)
Do vai trò M, N là như nhau, không mất tính tổng quát, giả sử M, H nằm cùng phía so với A
\(cos\widehat{MIH}=\dfrac{IH}{IM}\le\dfrac{IA}{IM}=\dfrac{\sqrt{2}}{4}\Rightarrow\widehat{MIH}\ge69^018'\) (do \(0< \widehat{MIH}\le90^0\) nên \(cos\widehat{MIH}\) nghịch biến so với \(\widehat{MIH}\))
\(\Rightarrow\widehat{MIN}=2\widehat{MIH}>90^0\Rightarrow sin\widehat{MIN}\) nghịch biến so với \(\widehat{MIN}\)
\(\Rightarrow sin\widehat{MIN}_{max}\) khi \(\widehat{MIN}_{min}\)
Lại có: \(\widehat{MIN}=180^0-2.\widehat{IMH}\Rightarrow\widehat{MIN}_{min}\) khi \(\widehat{IMH}_{max}\)
\(\Rightarrow sin\widehat{IMH}_{max}\) (\(0\le\widehat{IMH}\le90^0\) nên \(sin\widehat{IMH}\) và \(\widehat{IMH}\) đồng biến)
\(sin\widehat{IMH}=\dfrac{IH}{IM}\le\dfrac{IA}{IM}\Rightarrow sin\widehat{IMH}_{max}\) khi H trùng A
Hay \(S_{\Delta IMN-max}\) khi H trùng A \(\Leftrightarrow d\perp IA\)
\(\Rightarrow d\) nhận (1;-1) là 1 vtpt
Phương trình d: \(1\left(x-2\right)-y=0\Leftrightarrow x-y-2=0\)
a/ \(\overrightarrow{BC}=\left(6;-3\right)\Rightarrow\overrightarrow{n_{BC}}=\left(3;6\right)\)
\(\Rightarrow BC:3\left(x-1\right)+6\left(y+2\right)=0\)
\(BC:3x+6y+9=0\)
b/ Phương trình đường cao AA' nhận \(\overrightarrow{BC}\) làm vecto pháp tuyến\(\Rightarrow\overrightarrow{n_{AA'}}=\left(6;-3\right)\)
\(\Rightarrow AA':6\left(x-2\right)-3y=0\)
\(:6x-3y-12=0\)
c/ \(AA'\cap BC=\left\{A'\right\}\Rightarrow\left\{{}\begin{matrix}6x-3y-12=0\\3x+6y+9=0\end{matrix}\right.\Rightarrow A'\left(1;-2\right)\)
d/ \(\overrightarrow{AM}=\overrightarrow{MC}\Leftrightarrow\left(x_M-2;y_M\right)=\left(1-x_M;-2-y_M\right)\)
\(\Rightarrow M\left(\frac{3}{2};-1\right)\)
\(\overrightarrow{BM}=\left(\frac{13}{2};-2\right)\Rightarrow\overrightarrow{n_{BM}}=\left(2;\frac{13}{2}\right)\)
\(\Rightarrow BM:2\left(x+5\right)+\frac{13}{2}\left(y-1\right)=0\)
\(BM:2x+\frac{13}{2}y+\frac{7}{2}=0\)
d/ Gọi K là hình chiếu của B hạ xuống AC \(\Rightarrow BK\perp AC\)
\(\overrightarrow{n_{BK}}=\overrightarrow{AC}=\left(-1;-2\right)\)
\(\Rightarrow BK:-\left(x-2\right)-2y=0\)
\(BK:-x-2y+2=0\)
\(BK\cap AA'=\left\{H\right\}\Rightarrow\left\{{}\begin{matrix}-x-2y+2=0\\6x-3y-12=0\end{matrix}\right.\)
\(\Rightarrow H\left(2;0\right)\)
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
bạn ơi tại sao khoảng cách bé nhất lại cho =0 z bạn