K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(\dfrac{1+3\sqrt{2}-2\sqrt{3}}{\sqrt{6}+\sqrt{3}+\sqrt{2}}\)

\(=\dfrac{\left[1+\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]}{\left[\sqrt{6}+\left(\sqrt{3}+\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]}\)

Tử:

\(\left[1+\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]\)

\(=\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)+6\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{6}\) (nhân phân phối)

\(=5\sqrt{3}-7\sqrt{2}\)

Mẫu:

\(\left[\sqrt{6}+\left(\sqrt{3}+\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]\)

\(=6-\left(5+2\sqrt{6}\right)\)

\(=1-2\sqrt{6}\)

Ta có:

\(\dfrac{5\sqrt{3}-7\sqrt{2}}{1-2\sqrt{6}}\)

\(=\dfrac{\left(5\sqrt{3}-7\sqrt{2}\right)\left(1+2\sqrt{6}\right)}{1-24}\)

\(=\dfrac{5\sqrt{3}+30\sqrt{2}-7\sqrt{2}-28\sqrt{3}}{-23}\)

\(=\dfrac{-23\left(\sqrt{3}-\sqrt{2}\right)}{-23}\)

\(=\sqrt{3}-\sqrt{2}\)

21 tháng 7 2017

1. ĐK: x>3\(\sqrt{x-2+2\sqrt{x-3}}=\sqrt{\left(x-3\right)+2\sqrt{x-3}+1}=\sqrt{\left(\sqrt{x-3}+1\right)^2}=\sqrt{x-3}+1\\ \)2( Tương tự) Bớt 1 thêm 1

NV
2 tháng 11 2021

2.

Hàm số đồng biến trên R khi:

\(m-5>0\Rightarrow m>5\)

3.

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=0,8\)

2 tháng 11 2021

2

 

30 tháng 3 2023

\(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}=\dfrac{1}{\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)

\(=\dfrac{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)

\(=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{4-3}=\sqrt[3]{4}-\sqrt[3]{3}\)

21 tháng 7 2023

a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)

\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)

\(=\dfrac{3-\sqrt{5}}{2}\)

b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)

\(=\dfrac{2-\sqrt{3}}{1}\)

\(=2-\sqrt{3}\)

a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)

b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)

d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

=(căn 6-11)(căn 6+11)

=6-121=-115

e: \(\dfrac{3\sqrt{5}-2\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}=\dfrac{18+5\sqrt{10}}{2}\)

72: \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)

`= ((1-sqrta)(1-sqrta))/((sqrta+1)(sqrta-1))`

`=-(1-2 sqrt a +a)/(a-1)``

26 tháng 7 2023

\(\dfrac{1-\sqrt{a}}{1+\sqrt{a}}=\dfrac{\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}=\dfrac{1-2\sqrt{a}+a}{1-a}\)