K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(U=mn\left(m+n\right)+np\left(n+p\right)+pm\left(p+m\right)+2mnp\)

\(=mn\left(m+n\right)+np\left(n+p+m\right)+pm\left(p+m+n\right)\)

\(=mn\left(m+n\right)+p\left(n+p+m\right)\left(n+m\right)\)

\(=\left(n+m\right)\left(m+p\right)\left(n+p\right)\)

23 tháng 8 2021

Đề yêu cầu gì vậy?

 

1 tháng 11 2017

a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1

Khi đó

 \(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)

\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)

\(=4\left(ab+bc+ca+a+b+c\right)+3\)

Vậy thì mn + np + pm chia 4 dư 3.

b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:

Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4

Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.

Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.

NV
12 tháng 1

\(\Leftrightarrow\dfrac{z-mn}{m+n}-p+\dfrac{z-np}{n+p}-m+\dfrac{z-pm}{p+m}-n=0\)

\(\Leftrightarrow\dfrac{z-\left(mn+mp+np\right)}{m+n}+\dfrac{z-\left(mn+mp+np\right)}{n+p}+\dfrac{z-\left(mn+mp+np\right)}{p+m}=0\)

\(\Leftrightarrow\left[z-\left(mn+mp+np\right)\right]\left(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\right)=0\)

- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}=0\) thì pt nghiệm đúng với mọi z

- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\ne0\)

\(\Rightarrow z=mn+mp+np\)

13 tháng 1

Em cảm ơn ạ.

=> (m+n+p)2=152=225

=> (m+n+p)2= m2+n2+p2+2(mn+np+pm)=225

=> 77 + 2(mn+np+pm)=225

=> 2(mn+np+pm)=225 - 77 =148

=> mn+np+pm= 148 : 2 = 74

25 tháng 8 2016

Có m + n + p = 15

=> (m + n + p)2 = 152

=> m2 + n2 + p2 + 2mn + 2np + 2pm = 225

Mà  m2 + n2 + p2 = 77

=> m2 + n2 + p2 + 2mn + 2np + 2pm - (m2 + n2 + p2) = 225 - 77

=> 2mn + 2np + 2pm = 148

=> 2(mn + np + pm) = 148

=> mn + np + pm = 74

25 tháng 8 2016

cảm ơn bạn nhiều nha 

20 tháng 3 2018

Sao cho \(\dfrac{PD}{PN}\)=\(\dfrac{PM}{PF}\)

Minhf viết nhầm

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 70^\circ  + 80^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 30^\circ \end{array}\)

Xét tam giác ABC và tam giác PMN có:

\(\begin{array}{l}\widehat B = \widehat M = 80^\circ \\\widehat C = \widehat N = 30^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta PMN\) (g-g)

\( \Rightarrow \frac{{AB}}{{PM}} = \frac{{BC}}{{MN}} = \frac{{CA}}{{NP}}\) (Tỉ số đồng dạng)

13 tháng 3 2017

m n p d e f

câu a

xét tam giác mnp và tam giác dfp có

góc nmp = góc fdp (=90 độ)

chung góc p

=> tam giác mnp đồng dạng tam giác dfp (gg)

câu b

xét tam giác mnp và tam giác dne có

góc nmp = góc nde (=90 độ)

chung góc n

=> tam giác mnp đồng dạng tam giác dne (gg)

=> \(\dfrac{ne}{np}=\dfrac{dn}{mn}\)

=> ne . mn = nd . np

(lưu ý: hình vẽ chỉ mang tính chất minh hoạ :) )

chúc may mắn, 2 câu còn lại để mình xem, lâu ko làm lại dạng này