Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm xo∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho xo∈ (a;b) và f(xo)>f(x),∀x ∈ (a,b)∖{xo}.
Đáp án B
Hàm số đạt cực tiểu tại x = -1 khi và chỉ khi
Vậy không có giá trị nào của m thỏa mãn đề bài.
Đáp án A
Ta có: y’ = 3 x 2 + 4 m x + m 2
Hàm số đạt cực tiểu tại x = 1
⇒ y’(1) = 0
⇒ m = -3 hoặc m = -1
Với m = -3, ta có:
y’ = 0 ⇔ x = 1 hoặc x = 3
Vậy m = -3 không thoản mãn yêu cầu bài toán
Với m = -1, ta có:
y’ = 0 ⇔ x = 1 hoặc x = 1 3
Vậy m = -1 thỏa mãn yêu cầu bài toán
Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.
Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.
Chọn B
Đáp án D
Xét hàm số f x = m x 3 − m + 1 x − 2 → f ' x = 3 m x 2 − m − 1
Hàm số đạt cực tiểu tại x = 2 ⇒ f ' 2 = 0 ⇔ 3 m .2 2 − m − 1 = 0 ⇔ m = 1 11