Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-x^2-2x+2014}{x^2}=\dfrac{2014}{x^2}-\dfrac{2}{x}-1=2014\left(\dfrac{1}{x}-\dfrac{1}{2014}\right)^2-\dfrac{2015}{2014}\ge-\dfrac{2015}{2014}\)
\(A_{min}=-\dfrac{2015}{2014}\) khi \(x=2014\)
\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)
đặt 1/x=t ta có
\(A=1-2t+2014t^2\)
\(=2014\left(t^2-\frac{1}{1007}+\frac{1}{2014}\right)\)
=\(2014[\left(t-\frac{1}{2014}\right)^2-\left(\frac{1}{2014}\right)^2+\frac{1}{2014}]\)
=\(2014\left(t-\frac{1}{2014}\right)^2+\frac{2013}{2014}\)\(\ge\frac{2013}{2014}\)
dấu''='' xảy ra khi t-1/2014=0 <=>1/x=1/2014=>x=2014
\(Dựa.vào.ĐL.Viet:\\ \left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1.x_2=\dfrac{c}{a}=2m-4\end{matrix}\right.\\ x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-4.\left(m-2\right)=4m^2-8m-4m+12\\ =4.\left(m^2-3m+3\right)=4\left(m^2-3m+\dfrac{9}{4}\right)-3\ge-3\forall m\in R\\ Vậy.GTNN.của.A.là:-3\left(khi:m=\dfrac{3}{2}\right)\)
\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.
\(a,m=3=>x^2+3x-2=0\)
\(\Delta=3^2-4\left(-2\right)=17>0\)
pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)
=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m
theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)
có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)
\(< =>-2\left(-m\right)=2014< =>m=1007\)
a) Thay m=3 vào phương trình, ta được:
\(x^2+3x-2=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)
=4m^2-4m^2+4m-4=4m-4
Để (1) có 2 nghiệm thì 4m-4>=0
=>m>=1
a: Δ=(2m+2)^2-4(m-2)
=4m^2+8m+4-4m+8
=4m^2+4m+12
=(2m+1)^2+11>=11>0
=>Phương trình luôn cóhai nghiệm phân biệt
b: x1^2+2(m+1)x2-5m+2
=x1^2+x2(x1+x2)-4m-m+2
=x1^2+x1x2+x2^2-5m+2
=(x1+x2)^2-2x1x2+x1x2-5m+2
=(2m+2)^2-(m-2)-5m+2
=4m^2+8m+4-m+2-5m+2
=4m^2+2m+8
=4(m^2+1/2m+2)
=4(m^2+2*m*1/4+1/16+31/16)
=4(m+1/4)^2+31/4>=31/4
Dấu = xảy ra khi m=-1/4
\(A=\frac{x^4+2x^2+25}{4x^2}=\frac{x^4+25}{4x^2}+\frac{2x^2}{4x^2}=\frac{x^4+25}{4x^2}+\frac{1}{2}\)
vì \(x^4>=0;25>0\Rightarrow\frac{x^4+25}{4x^2}+\frac{1}{2}>=\frac{2\sqrt{25\cdot x^4}}{4x^2}+\frac{1}{2}=\frac{10x^2}{4x^2}+\frac{1}{2}=\frac{5}{2}+\frac{1}{2}=3\)(bđt cosi)
dấu = xảy ra khi \(x^4=25\Rightarrow x^2=5\Rightarrow x=+-\sqrt{5}\)
vậy min của A là 3 khi x= \(+-\sqrt{5}\)
\(A=\frac{x^2-2x+2014}{x^2}=1-\frac{2}{x}+\frac{2014}{x^2}\)
Đặt \(\frac{1}{x}=a\)
=> \(A=1-2a+2014a^2\)
<=>\(A=2014\left(a^2-\frac{1}{1007}a+\frac{1}{2014}\right)\)
<=>\(A=2014\left(a^2-2\times a\times\frac{1}{2014}+\frac{1}{2014^2}-\frac{1}{2014^2}+\frac{1}{2014}\right)\)
<=>\(A=2014\left[\left(a-\frac{1}{2014}\right)^2+\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\right]\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+2014\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+1-\frac{1}{2014}\)
<=>\(A=2014\left(a-\frac{1}{2014}^2\right)+\frac{2013}{2014}\ge\frac{2013}{2014}\)
Vậy A đạt GTNN <=> \(A=\frac{2013}{2014}<=>a=\frac{1}{x}=\frac{1}{2014}<=>x=2014\)
Amin = 0 khi và chỉ khi x = 0