Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\frac{3}{x-\frac{1}{2}}=\frac{x-\frac{1}{2}}{27}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=3.27\)
\(\Leftrightarrow x^2-x+\frac{1}{4}=81\)
\(\Leftrightarrow x^2-x-80,75=0\)
\(\Leftrightarrow4x^2-4x-323=0\)(nhân cả 2 vế với 4)
\(\Leftrightarrow4x^2-38x+34x-323=0\)
\(\Leftrightarrow2x\left(2x-19\right)+17\left(2x-19\right)=0\)
\(\Leftrightarrow\left(2x+17\right)\left(2x-19\right)=0\)
\(\Leftrightarrow\orbr{\orbr{\begin{cases}2x+17=0\\2x-19=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{17}{2}\\x=\frac{19}{2}\end{cases}}\)
vậy.....
(3x+2)(x-1)=0
vi.(3x+2)(x-1)=0
suy ra3x+2=0 hoacx-1=0
với3x+2=0
3x=-2
x=-2/3
vớix-1=0
x=1
3x^2 - 3x + 2x - 2 = 0
3x^2 - x - 2 = 0
3x^2 - 3x + 2x -2 = 0
3x(x - 1) + 2(x - 1) = 0
(x - 1) * (3x + 2) =0
x - 1 = 0 hoặc 3x + 2 =0
x = 1 hoặc x = -2/3
\(\left(-\dfrac{2}{5}\right)^2\cdot\left|\dfrac{1}{3}-\dfrac{3}{5}\right|-\dfrac{2}{5}\cdot\sqrt{\dfrac{1}{25}}+\dfrac{4}{3}\)
\(=\dfrac{4}{25}\cdot\dfrac{4}{15}-\dfrac{2}{5}\cdot\dfrac{1}{5}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{2}{25}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{30}{375}+\dfrac{500}{375}\)
\(=\dfrac{486}{375}=\dfrac{162}{125}\)
Tìm x :
x + {(x-3) - [(x+3) - (-x - 2)]} =x
Ai nhanh mik tick nha mik đang cần gấp mong mng giúp mik
x + {(x - 3) - [(x + 3) - (-x - 2)]} = x
=> x + {x - 3 - [x + 3 + x + 2]} = x
=> x + {x - 3 - x - 3 - x - 2} = x
=> x + x - 3 - x - 3 - x - 2 = x
=> (x - x) + (x - x) - (3 + 3 + 2) = x
=> 0 + 0 - 8 = x
=> - 8 = x
vậy x = - 8
=>(x-3)-[(x+3)-(-x-2)]=0
=>(x-3)-(x+3+x+2)=0
=>x-3-2x-5=0
=>-x-8=0
=>-x=8=>x=-8
\(\dfrac{1}{2}-\dfrac{5}{12}x=\dfrac{2}{3}\)
\(\dfrac{5}{12}x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3}{6}-\dfrac{4}{6}\)
\(\dfrac{5}{12}x=\dfrac{-1}{6}\)
\(x=\dfrac{-1}{6}:\dfrac{5}{12}=\dfrac{-1}{6}.\dfrac{12}{5}\)
\(x=\dfrac{-2}{5}\)
| x + 1 | = 3
\(\Rightarrow\hept{\begin{cases}x+1=3\\x+1=-3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy .....
\(\left|x+1\right|-1=2\Rightarrow\left|x+1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy \(x\in\left\{2;-4\right\}\)