Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72=\left(x^2-4\right)\left(x^2-10\right)-72=x^4-14x^2+40-72\)
\(A=x^4-14x^2-32=x^4+2x^2-16x^2-32=x^2\left(x^2+2\right)-16\left(x^2+2\right)\)
\(A=\left(x^2+2\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
Nguyễn TrươngTruong Viet TruongAkai Harumasoyeon_Tiểubàng giảiMysterious PersonMashiro Shiina
(x-2)(x+2)(x2-10)=72
<=>x4-14x2+40=72
<=>x4-14x2-32=0
<=>\(\left\{{}\begin{matrix}x^2=-2\left(VN\right)\\x^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
b; x(x-1)(x+1)(x+2)-24
=(x2+x)(x2+x-2)-24
Đặt x2+x=k khi đó k(k-2)-24=k2-2k-24
=(k2-2k+1)-25=(k-1)2-52
=(k-1-5)(k-1+5)=(k-6)(k+4)
c; (x+2)(x-2)(x2-10)-72
=(x2-4)(x2-10)-72
Đặt x2-7=k khi đó (k-3)(k+3)-72=k2-9-72
=k2-81=(k-9)(k+9)=(x2-7-9)(x2-7+9)
=(x2-16)(x2+2)=(x-4)(x+4)(x2+2)
d; (x-7)(x-5)(x-4)(x-2)-72
=(x2-9x+14)(x2-9x+8)-72
Đặt x2-9x+11=k khi đó (k+3)(k-3)-72=k2-9-72
=k2-81=(k-9)(k+9)=(x2-9x+11-9)(x2-9x+11+9)
=(x2-9x+2)(x2-9x+20)
=(x2-9x+2)(x2-4x-5x+20)
=(x2-9x+2)(x-4)(x-5)
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-10x^2-4x^2+40-72\)
\(=x^4-14x^2-32\)
\(=x^4-16x^2+2x^2-32\)
\(=\left(x^4-16x^2\right)+\left(2x^2-32\right)\)
\(=x^2\left(x^2-16\right)+2\left(x^2-16\right)\)
\(=\left(x^2+2\right)\left(x^2-16\right)\)
\(=\left(x^2+2\right)\left(x-4\right)\left(x+4\right)\)
Câu 1:
\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)-112\)
\(=\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)
Câu 2:
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-2\)
\(=\left(x^2-7\right)^2-3^2-72\)
\(=\left(x^2-7\right)^2-81\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
(x−1)(x−2)(x+4)(x+5)−112
=(x−1)(x+4)(x−2)(x+5)−112
=(x^2+3x−4)(x^2+3x−10)−112
=(x^2+3x−7)^2−32−112
=(x^2+3x−7)^2−112
=(x^2+3x+4)(x^2+3x−18)
=(x^2+3x+4)(x+6)(x−3)
Câu 2:
(x−2)(x+2)(x^2−10)−72
=(x2−4)(x^2−10)−2
=(x^2−7)^2−32−72
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left[\left(x^2-7\right)+3\right]\left[\left(x^2-7\right)-3\right]=72\)
\(\Leftrightarrow\left(x^2-7\right)^2-9=72\)
\(\Leftrightarrow\left(x^2-7\right)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-7=9\\x^2-7=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=-2\left(loai\right)\end{cases}}\)
\(\Leftrightarrow x=\pm4\)
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
Đặt \(y=x^2-7\) Pt trở thành: \(\left(y+3\right)\left(y-3\right)=73\)
\(\Leftrightarrow y^2-9=72\)
\(\Leftrightarrow y^2=81\)
\(\Leftrightarrow y=\pm9\)
Từ đó tìm được: \(x_1=-4;x_2=4\)
\(\left(x^2-4\right)\left(x^2-10\right)=72\)
<=> \(x^4-14x^2+40-72=0\)
<=> \(x^4-14x^2-32=0\)
<=> \(\left(x^2-16\right)\left(x^2+2\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x^2-16=0\\x^2+2=0\end{array}\right.\)=> x=\(\pm\)4
vậy tập nghiệm S={4;-4}
\(\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-10x^2-4x^2+40=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow x^4+2x^2-16x^2-32=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-16\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-4^2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x-4\right)\left(x+4\right)=0\left(1\right)\)
\(Có:x^2\ge0\)\(\text{ với mọi x}\)
\(\Rightarrow x^2+2\ge0+2=2\ne0\text{ với mọi x}\)
\(\left(1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x+4=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
\(\text{Vậy }x=\pm4\)
(x2-4)(x2-10)=72
=>x4-14x2+40=72
=>x4-14x2-32=0
=>(x-4)(x3+4x2+2x+8)=0
=>(x-4)(x+4)(x2+2)=0
=> (x-4) = 0 hoặc (x+4)=0 hoặc (x2+2)=0
=> x = 4 hoặc x=-4