Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
05/04/2021ai thương mẹ thì gửi dòng chữ này cho 20 người , ai mà ko gửi mà xóa thì mẹ bạn sẽ chết trong vào 3 ngày , xin lỗi mĩnh cũng bị ép gửi , xin lỗi nhé vì tớ cũng thương mẹ Xin chào. Tôi là QuỳnhVõ Như Quỳnh , tôi đến Việt Nam khoảng 4 năm rồi, tôi làm chủ 1 đại lý vế số, tôi bị chết oan ,tôi có thể gửi tin nhắn cho bạn.Hãy tin tôi đi ! Bạn hãy gửi tin nhắn này cho 50 người để được may mắn Bạn ko tin tôi ư?1 cậu bé tên Ngọc đọc xong tin nhắn rùi cười nhạo, tối hôm cậu bé ấy bị xe tông chết.1 cô gái tên Mai đọc xong rồi gửi qua loa cho 20 người , cô ấy đã thi rớt đại học .1 cặp vợ chồng nhận được tin nhắn này liền gửi cho 50 người, 3 ngày sau hai vợ chồng trúng được 1 căn nhà trị giá 2000000000.Nếu bạn không gửi hoặc gửi qua loa thì sẽ bị giống mấy người trên .Lời nguyền sẽ bắt đầu khi bn đọc tin nhắn này . Nhanh tay lên .haha,chúc may mắn
vẫn thời trẻ trâu nên ko bik câu nài giải như thế nào!Trân trọng!
M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)
Áp dụng định lý viettel :( :v )
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)
\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)
Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)
@_@ đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
Quy tắc: tam thức bậc 2 ko đổi dấu khi \(\Delta< 0\) (có dấu = hay ko phụ thuộc đề yêu cầu \(f\left(x\right)\) có dấu = hay ko)
Khi đã có \(\Delta< 0\) thì dấu \(f\left(x\right)\) chỉ còn phụ thuộc a. Nếu a dương thì \(f\left(x\right)\) dương trên R, nếu a âm thì \(f\left(x\right)\) âm trên R.
Lần sau em đăng trong h nhé!
Hướng dẫn:
\(x-\sqrt{2x+7}\le4\)
<=> \(\sqrt{2x+7}\ge x-4\)(1)
ĐK: x \(\ge\)-7/2
+) Với x - 4 < 0 <=> x < 4 khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng
Đối chiếu đk: x\(\in\)[ -7/2; 4 )
+) Với x - 4 \(\ge\)0 <=> x \(\ge\)4
(1) <=> \(2x+7\ge x^2-8x+16\)
<=> \(x^2-10x+9\le0\)
<=> x\(\in\)[ 1; 9 ]
Đối chiếu đk: x \(\in\)[4; 9 ]
Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]
Vậy a = -7/2; b = 9 nên 2a + b = 2
Bài 4:
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)
f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)