Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7
Thay \(x\) = y.\(\dfrac{3}{4}\) và z = \(\dfrac{y}{5}\).7 vào biểu thức:
2\(x\) + 3y - z = 186 ta có:
2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186
y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186
y.\(\dfrac{31}{10}\) = 186
y = 186 : \(\dfrac{31}{10}\)
y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84
\(x\) + y + z = 45 + 60 + 84 = 189
Mình không hiểu câu sau của đề bài.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó:
\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)
\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)
\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)
Tổng là: \(x+y+z=45+60+84=189\)
Vậy....
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{9}=\frac{y}{6}\)(1)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{6}=\frac{z}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{6}=\frac{z}{8}=\frac{x+y+z}{9+6+8}=\frac{46}{23}=2\)
=>x=2.9=18
y=2.6=12
z=2.8=16
Vậy...
Ta có: `x/3=y/2 -> x/9=y/6`
`y/3=z/4 -> y/6=z/8`
Từ `2` điều trên `-> x/9=y/6=z/8`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/9=y/6=z/8=(x+y+z)/(9+6+8)=46/23=2`
`-> x/9=y/6=z/8=2`
`-> x=2*9=18, y=2*6=12, z=2*8=16.`
thanks b gấc nhìuu