K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 1

Do hệ có nghiệm x=3; y=-1 nên thay cặp nghiệm vào hệ ta được:

\(\left\{{}\begin{matrix}2.3+a.\left(-1\right)=b+4\\a.3+b.\left(-1\right)=8+9a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)

1 tháng 12 2021

Thay \(x=3;y=-1\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}6-a=b+4\\3a-b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-10\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)

1 tháng 12 2021

lỗi!

27 tháng 2 2020

thay x=3; y=1 vào hệ phương trình ta có:

\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b-6a=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a=-6\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)

vậy a=-6/5; b=4/5 thì hệ phương trình có nghiệm x=3;y=1

27 tháng 2 2020

- Thay x = 3, y = 1 vào hệ phương trình trên ta được :

\(\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b+4-6\\3a+b-9a=8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b-2\\b-6\left(b-2\right)=8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b-2\\b-6b+12=8\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}a=b-2\\-5b=-4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=\frac{4}{5}-2=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)

Vậy ( a, b ) = \(\left(-\frac{6}{5},\frac{4}{5}\right)\) để hệ phương trình có nghiệm là x = 3, y = 1 .

Thay x=-1 và y=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\-1+2b=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

NV
21 tháng 1

Do (-1;2) là nghiệm của hệ bêb:

\(\left\{{}\begin{matrix}-a+2=0\\-1+2b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

13 tháng 1 2018

a, \(\left(I\right):\left\{{}\begin{matrix}2x+ay=b\\ax-by=1\end{matrix}\right.\)

Thay (x;y)=(1;-3) vào hpt có :

\(\left\{{}\begin{matrix}2-3a=b\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\a+3b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b=6\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a=5\\a+3b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\\dfrac{5}{8}+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\b=\dfrac{1}{8}\end{matrix}\right.\)

Vậy a=5/8 , b=1/8

4 tháng 5 2017

Thay \(x=\sqrt{2};y=\sqrt{3}\)ta có:

\(\left\{{}\begin{matrix}2\sqrt{2}-a\sqrt{3}=b\\a\sqrt{2}+b\sqrt{3}=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a\sqrt{3}=2\sqrt{2}-b\\a\sqrt{2}+b\sqrt{3}=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\\\sqrt{2}\cdot\dfrac{2\sqrt{2}-b}{\sqrt{3}}+b\sqrt{3}=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\\4-b\sqrt{2}+3b=\sqrt{3}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}b\left(\sqrt{2}-3\right)=4-\sqrt{3}\\a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}b=\dfrac{4-\sqrt{3}}{\sqrt{2}-3}\\a=\dfrac{2\sqrt{2}-\dfrac{4-\sqrt{3}}{\sqrt{2}-3}}{\sqrt{3}}=\dfrac{4-6\sqrt{2}-4+\sqrt{3}}{\sqrt{3}\left(\sqrt{2}-3\right)}=\dfrac{\sqrt{3}-6\sqrt{2}}{\sqrt{3}\left(\sqrt{2}-3\right)}=\dfrac{1-2\sqrt{6}}{\sqrt{2}-3}\end{matrix}\right.\)

1: Thay x=1 và y=0 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}1+a\cdot0=1\\a\cdot1+0=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1=1\left(đúng\right)\\a=2\end{matrix}\right.\)

=>a=2

2: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{a}\ne\dfrac{a}{1}\)

=>\(a^2\ne1\)

=>\(a\notin\left\{1;-1\right\}\)

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp