K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Đặt $ax^3+12x^2+bx+1=(mx+1)^3$

$\Leftrightarrow ax^3+12x^2+bx+1=m^3x^3+3m^2x^2+3mx+1$

Đồng nhất hệ số ta có:

\(\left\{\begin{matrix} a=m^3\\ 12=3m^2\\ b=3m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=\pm 2\\ a=\pm 8\\ b=\pm 6\end{matrix}\right.\)

Vậy $(a,b)=(-8,-6); (8;6)$

5 tháng 9 2020

Nhận xét: P(x) có dạng một khai triển của đa thức \(\left(\alpha x+\beta\right)^3\).Trong P(x): hệ số của x3 là a,hệ số tự do là 1

=> nếu P(x) là bậc 3 của 1 đa thức thì đa thức đó phải có dạng \(\left(\sqrt[3]{a}x+1\right)^3=ax^3+3\sqrt[3]{a^2}x^2+3\sqrt[3]{a}x+1\)

Đồng nhất các hệ số => \(\hept{\begin{cases}3\sqrt[3]{a^2}=12\\b=3\sqrt[3]{a}\end{cases}}\)Giải được 2 nghiệm (a;b)=(8;6),(-8;-6)

2 tháng 7 2015

bạn xem lại đề cho  f(x)

NV
13 tháng 1 2021

\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)

Cộng vế với vế:

\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)

Vậy \(a>0\)