Tìm y , biết
y + y * 9 : 3 - y * 4 + y * 7 = 105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y x 2/5 =8/21
y= 8/21:2/5
y= 20/21
12/7: y =7/5-2/5
12/7:y = 1
y = 12/7 :1
y= 12/7
\(y\times\dfrac{2}{5}=\dfrac{8}{21}\\ y=\dfrac{8}{21}:\dfrac{2}{5}\\ y=\dfrac{20}{21}\\ \dfrac{12}{7}:y+\dfrac{2}{5}=\dfrac{7}{5}\\ \dfrac{12}{7}:y=\dfrac{7}{5}-\dfrac{2}{5}\\ \dfrac{12}{7}:y=1\\ y=\dfrac{12}{7}:1=\dfrac{12}{7}\)
\(\dfrac{1}{5}+y=7\)
\(y=7-\dfrac{1}{5}\)
\(y=\dfrac{35}{5}-\dfrac{1}{5}\)
\(y=\dfrac{34}{5}\)
_________________________
\(y:\dfrac{3}{4}=\dfrac{5}{7}\)
\(y=\dfrac{5}{7}\times\dfrac{3}{4}\)
\(y=\dfrac{15}{28}\)
Chúc bạn học tốt
a: ta có: \(\dfrac{2x-5}{7x-1}=\dfrac{4x+3}{14x-9}\)
\(\Leftrightarrow\left(2x-5\right)\left(14x-9\right)=\left(7x-1\right)\left(4x+3\right)\)
\(\Leftrightarrow28x^2-18x-70x+45=28x^2+21x-4x-3\)
=>-88x+45=17x-3
=>-105x=-48
hay x=16/35
b: Sửa đề: \(\dfrac{x}{4}=\dfrac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x-y}{4-9}=\dfrac{105}{-5}=-21\)
Do đó: x=-84; y=-189
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x-5y}{2\cdot3-5\cdot4}=\dfrac{56}{-14}=-4\)
Do đó:x=-12; y=-16
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x^2}{2}=\dfrac{y^2}{3}=\dfrac{x^2+y^2}{2+3}=\dfrac{125}{5}=25\)
Do đó: \(x^2=50;y^2=75\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5\sqrt{2};-5\sqrt{2}\right\}\\y\in\left\{5\sqrt{3};-5\sqrt{3}\right\}\end{matrix}\right.\)
a, y \(\times\) \(\dfrac{4}{3}\) = \(\dfrac{16}{9}\)
y = \(\dfrac{16}{9}\) : \(\dfrac{4}{3}\)
y = \(\dfrac{4}{3}\)
b, ( y - \(\dfrac{1}{2}\)) + 0,5 = \(\dfrac{3}{4}\)
y - 0,5 + 0,5 = \(\dfrac{3}{4}\)
y = \(\dfrac{3}{4}\)
c, \(\dfrac{4}{5}-\dfrac{2}{5}y\) = 0,2
0,8 - 0,4y = 0,2
0,4y = 0,8 - 0,2
0,4y = 0,6
y = 1,5
d, (y + \(\dfrac{3}{4}\)) \(\times\) \(\dfrac{5}{7}\) = \(\dfrac{10}{9}\)
y + \(\dfrac{3}{4}\) = \(\dfrac{10}{9}\) : \(\dfrac{5}{7}\)
y + \(\dfrac{3}{4}\) = \(\dfrac{14}{9}\)
y = \(\dfrac{14}{9}\) - \(\dfrac{3}{4}\)
y = \(\dfrac{29}{36}\)
e, y : \(\dfrac{5}{4}\) = \(\dfrac{9}{5}\) + \(\dfrac{1}{2}\)
y : \(\dfrac{5}{4}\) = \(\dfrac{23}{10}\)
y = \(\dfrac{23}{10}\)
y = \(\dfrac{23}{8}\)
f, y \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\) \(\times\) y = \(\dfrac{4}{5}\)
y \(\times\) ( \(\dfrac{1}{2}+\dfrac{3}{2}\)) = \(\dfrac{4}{5}\)
2y = \(\dfrac{4}{5}\)
y = \(\dfrac{2}{5}\)
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
\(B(y) - A(y) = 2{y^3} - 9{y^2} + 4y\)
\(\begin{array}{l}A(y) = - 5{y^4} - 4{y^2} + 2y + 7\\ \Rightarrow B(y) = 2{y^3} - 9{y^2} + 4y - 5{y^4} - 4{y^2} + 2y + 7\\ = - 5{y^4} + 2{y^3} - 13{y^2} + 6y + 7\end{array}\)
a) \(\frac{7}{10}-y\cdot\frac{3}{4}=\frac{1}{5}\)
\(y\cdot\frac{3}{4}=\frac{7}{10}-\frac{1}{5}\)
\(y\cdot\frac{3}{4}=\frac{1}{2}\)
\(y=\frac{1}{2}:\frac{3}{4}\)
\(y=\frac{1}{2}\cdot\frac{4}{3}\)
\(y=\frac{2}{3}\)
b) \(\frac{5}{6}:\left(y+\frac{7}{9}\right)=\frac{3}{4}\)
\(y+\frac{7}{9}=\frac{5}{6}:\frac{3}{4}\)
\(y+\frac{7}{9}=\frac{5}{6}\cdot\frac{4}{3}\)
\(y+\frac{7}{9}=\frac{10}{9}\)
\(y=\frac{10}{9}-\frac{7}{9}\)
\(y=\frac{3}{9}=\frac{1}{3}\)
**** !
a, \(\frac{7}{10}-y\times\frac{3}{4}=\frac{1}{5}\)
\(\Rightarrow y\times\frac{3}{4}=\frac{7}{10}-\frac{1}{5}\)
\(\Rightarrow y\times\frac{3}{4}=\frac{1}{2}\)
\(\Rightarrow y=\frac{1}{2}\div\frac{3}{4}\)
\(\Rightarrow y=\frac{1}{3}\)
b, \(\frac{5}{6}\div\left(y+\frac{7}{9}\right)=\frac{3}{4}\)
\(\Rightarrow y+\frac{7}{9}=\frac{5}{6}\div\frac{3}{4}\)
\(\Rightarrow y+\frac{7}{9}=\frac{10}{9}\)
\(\Rightarrow y=\frac{10}{9}-\frac{7}{9}\)
\(\Rightarrow y=\frac{1}{3}\)
y + y x 9 : 3 - y x 4 + y x 7 = 105
y x 1 + y x 3 - y x 4 + y x 7 = 105
y x ( 1 + 3 - 4 + 7 ) = 105
y x 7 = 105
y = 105 : 7
y = 15
Vậy y = 15
y+y*9:3-y*4+y*7=105
y+y*3-y*4+y*7=105
y*(1+3-4+7)=105
y*7=105
y=105:7
y=15