5^x+5^y=1250 tìm xy bạn nào giúp vs ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(2-y\right)-y+2-2=5\)
\(\left(2-y\right)\left(x+1\right)=7\)
⇒ (x+1) và (2-y) ϵ {-1;1;-7;7}
⇒ (x;y) ϵ {(-2;5);(0;-5);(-8;3);(6;1)}
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé
\(\left(x+1\right)\left(xy-1\right)^2=3=1.3=3.1\)
có \(\left(xy-1\right)^2\ge0\)nên \(\left(xy-1\right)^2=1\Rightarrow x+1=3\Leftrightarrow x=2\)
\(\left(xy-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}}\)
Vậy có các nghiệm \(\left(x,y\right)=\left\{\left(2,1\right),\left(2,0\right)\right\}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Leftrightarrow6x-3y=2x+4y\)
\(\Leftrightarrow6x-2x=4y+3y\)
\(\Leftrightarrow4x=7y\)
\(\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Vậy tỉ số giữa x và y là \(\frac{x}{7}=\frac{y}{4}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Rightarrow6x-3y=2x+4y\)
\(\Rightarrow6x-2x=3y+4y\)
\(\Rightarrow4x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{7}\)
Vậy tỉ số giữa x và y là \(\frac{4}{7}\)
_Chúc bạn học tốt_
\(x\cdot y=6\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-1\\y=-6\end{cases}}\)
hoặc \(\hept{\begin{cases}x=6\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-6\\y=-1\end{cases}}\)
hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
hoặc \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)
Ta thấy:
Câu 1: \(xy-x+2y=5\)
\(\Rightarrow xy-x+2y-2=3\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=3\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=3\)
Do \(x,y\in Z\) nên \(x+2,y-1\in Z\). Khi đó ta có bảng sau:
x + 2 | 3 | 1 | -1 | -3 |
y - 1 | 1 | 3 | -3 | -1 |
x | 1 | -1 | -3 | -5 |
y | 2 | 4 | -2 | 0 |
Câu 2: \(x\left(y+2\right)+y=1\)
\(\Rightarrow x\left(y+2\right)+\left(y+2\right)=3\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=3\)
Do \(x,y\in Z\) nên \(x+1,y+2\in Z\). Khi đó ta có bảng sau:
x + 1 | 3 | 1 | -1 | -3 |
y + 2 | 1 | 3 | -3 | -1 |
x | 2 | 0 | -2 | -4 |
y | -1 | 1 | -5 | -3 |
Câu 3: \(xy=x-y\)
\(\Rightarrow xy-x+y=0\)
\(\Rightarrow xy-x+y-1=-1\)
\(\Rightarrow x\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-1\right)=-1\)
Do \(x,y\in Z\) nên \(x+1,y-1\in Z\). Khi đó ta có bảng sau:
x + 1 | 1 | -1 |
y - 1 | -1 | 1 |
x | 0 | -2 |
y | 0 | 2 |
Bài 1:
b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
=0
x,y cộng lại = 4,431 thì sẽ được kết quả thôi
=> có vô số cặp x,y, x,y không đồng thừi là số nguyên dương
Đúng thì like giúp mik nhé. Thx