K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Có:CD là tia phân giác của góc ACB
      BE là tia phân giác của góc ABC
      mà góc ACB= góc ABC(tam giác ABC cân tại A)
\(\Rightarrow\frac{1}{2}\) góc C =\(\frac{1}{2}\) góc B
hay góc ACD=góc ABE
Xét tam giác ABE và tam giác ACD có:
góc A chung
AB=AC(tam giác ABC cân tại A)
góc ABE= góc ACD
=>tam giác ABE = tam giác ACD (g-c-g)
=>AE=AD(2 cạnh tương ứng)
=>tam giác AED cân tại A
=>góc AED=\(\frac{180-gócA}{2}\left(1\right)\)
Có:tam giác ABC cân tại A
=>góc ACB=\(\frac{180-gócA}{2}\left(2\right)\)
Từ(1) và (2)=>góc AED= góc ACB(=\(\frac{180-gócA}{2}\))
Mà hai góc này ở vị trí đồng vị
=>DE//BC
=>DECB là hình thang
mà BE=CD(tam giác ABE=tam giác ACD)
=>Hình thang DECB là hình thang cân.
b,Có:DE//BC(CMT)
=>góc EDC=góc DCB(2 góc so le trong)
mà góc ECD=góc DCB (CD là tia phân giác góc C)
=>góc EDC=góc ECD (=góc DCB)
=>tam giác EDC cân tại E
=>ED=EC
mà DB=EC(hai cạnh bên của hình thang cân )
=>ED=EC=DB

 

4 tháng 8 2016

a) 

ta có góc B= góc C( tam giác ABC cân tại A)

=> 1/2  góc B= 1/2 góc C

=> ABE=ACD=EBC=DCB

xét tam giác ABE và tam giác ACD có:

AB=AC(gt)

A(chung)

ABE=ACD( cmt)

=> tam giác ABE= tam giác ACD(g.c.g)

=> \(\begin{cases}AD=AE\\BE=CD\end{cases}\)

AD=AE=> tam giác ADE cân tại A

=> góc ADE=\(\frac{180^o-A}{2}\)

ta có tam giác ABC cân tại A

=> góc ABC=\(\frac{180^o-A}{2}\)

=> góc ABC= góc ADE

=> DE//BC(1)

ta có:AB=AC

AD=AE(cmt)

BD=AB-AD

EC=AC-AE

=> BD=EC(2)

từ (1)(2)=> tứ giác BDEC là hình thang cân

b)

theo câu a, ta có: tứ giác BDEC là hình thang cân 

=> DB=EC(3)

theo câu a,ta có DE//BC=> DEB=EBC mà EBC=DBE(gt)

=> DEB=DBE=> tam giác DBE cân tại D

=> DE=DB(4)

từ (3)(4)=> DB=EC

                 DE=DB

=> DB=EC=DE(đfcm)

 

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)

24 tháng 7 2017

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
suy ra AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
suy ra AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90* 
do đó ^DAB+^BAH+ ^HAC+^CAE=180* 
tức là D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
nên tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra ^ADB=^AHB=90* 
tương tự có ^AEC=90* 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
công vế với vế của (5) và (6) ta có BD+CE=BH+CH 
hay BD+CE=BC

k mik nha bn

25 tháng 7 2017

Thanks bn nha .Con bai đâu tiên

18 tháng 1 2017

a/ VÌ \(\Delta ABC\) cân tại A nên ^B=^C

Mà ^B1=^B2 ;^C1=^C2(VÌ BE và CD là tia phân giác của ^C,^B)

Do đó ^b1=^c1

xét \(\Delta\)ABE và\(\Delta\)ACD

AB=AC(tam giác cân)

^BAE=^CAD

^B1=^C1

\(\Rightarrow\Delta\)ABE=\(\Delta\)ACD