Help me!Cứu mk với.Ngày mai là học Toán rùi.Hai bài này là bài*nên hơi khó nhưng mong các bạn giúp đỡ
Bài 1:Với giá trị nào của x thì biểu thức
\(E=\frac{1}{3,5-\left|x+5\right|}\)đạt giá trị dương nhỏ nhất? Tìm giá trị nhỏ nhất ấy
Bài 2:Tìm tất cả các cặp số hữu tỉ x,y có dạng \(x=\frac{1}{b};y=\frac{c}{3},b,c\in Z,b\ne0\)sao cho |x|+|y|=1
Bài 1. Ta luôn có : \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow3,5-\left|x+5\right|\le3,5\Rightarrow\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}\)
Hay \(E\ge\frac{2}{7}\) . Dấu "=" xảy ra khi và chỉ khi \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy Min E = 2/7 <=> x = -5
Bài 2. Ta có : \(\left|x\right|+\left|y\right|=1\Leftrightarrow\left|\frac{1}{b}\right|+\left|\frac{c}{3}\right|=1\)
Xét các trường hợp :
1. Nếu \(b< 0,c\le0\) thì \(-\frac{1}{b}-\frac{c}{3}=1\Leftrightarrow bc+3=-3b\Leftrightarrow b\left(c+3\right)=-3\)
Vì b,c là các số nguyên nên b = -1 hoặc b = -3
+) Với b = -1 thì c+3 = 3 => c = 0 (t/m)
+) Với b = -3 thì c + 3 = 1 => c = -2 (t/m)
Vậy (b;c) = (-1;0) ; (-3;-2)
2. Nếu \(b>0,c\ge0\) thì \(\frac{1}{b}+\frac{c}{3}=1\Rightarrow bc+3=3b\Rightarrow b\left(c-3\right)=-3\)
Vì b,c là các số nguyên nên b = 1 hoặc b = 3
+) Với b = 1 thì c-3 = -3 => c = 0 (t/m)
+) Với b = 3 thì c-3 = -1 => c = 2 (t/m)
Vậy (b;c) = (3;2) ; (1;0)
3. Nếu \(b>0,c\le0\) thì \(\frac{1}{b}-\frac{c}{3}=1\Rightarrow b\left(c+3\right)=3\)
Tương tự xét như trên được (b;c) = (1;0) ; (3;-2)
4. Nếu b < 0 , \(c\ge0\) thì \(\frac{c}{3}-\frac{1}{b}=1\Rightarrow b\left(c-3\right)=3\)
=> (b;c) = (-1;0) ; (-3;2)
Vậy (b;c) = (-1;0) ; (-3;-2) ; (3;2) ; (1;0) ; (3;-2) ; (-3;2)