Tìm x : (x+1)3 + (x-1)3 = (x-1)(x+1) +4
Help help các bác ạ :v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
Đặt F(\(x\)) = (\(x\) - 1)(\(x\)+3)(\(x\) - 4)>0
Lập bảng xét dấu:
\(x\) | -3 1 4 |
\(x-1\) | - - 0 + + |
\(x\) + 3 | - 0 + + + |
\(x-4\) | - - - 0 + |
F(\(x\)) | - 0 + 0 - 0 + |
Theo bảng trên ta có Nghiệm của bất phương trình là:
\(\left[{}\begin{matrix}x\in\left\{-2;-1;0\right\}\\x\in\left\{x\in Z/x>4\right\}\end{matrix}\right.\)
\(x:\dfrac{3}{4}\) = \(\dfrac{9}{14}-\dfrac{1}{7}\)
\(x:\dfrac{3}{4}\) = \(\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\) x \(\dfrac{3}{4}\)
\(x=\dfrac{3}{8}\)
\(x\)x \(\dfrac{1}{2}-\dfrac{1}{4}\)=\(\dfrac{2}{3}\)
\(x\) x \(\dfrac{1}{4}\) =\(\dfrac{2}{3}\)
\(x\) = \(\dfrac{2}{3}:\dfrac{1}{4}\)
\(x\) \(\dfrac{8}{3}\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
Câu 2:
\(A\left(x\right)=x^2+3x+1\)
\(B\left(x\right)=2x^2-2x-3\)
a) Tính A(x) là sao em?
b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)
\(=x^2+3x+1+2x^2-2x-3\)
\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)
\(=3x^2+x-2\)
Câu 1:
\(M\left(x\right)=x^3+3x-2x-x^3+2\)
\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)
\(=x+2\)
Bậc của M(x) là 1
\(\left(x+1\right)^3+\left(x-1\right)^3=\left(x-1\right)\left(x+1\right)+4\)
\(\Rightarrow\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]-\left(x+1\right)\left(x-1\right)-4=0\)
\(\Rightarrow2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)-x^2+1-4=0\)
\(\Rightarrow2x\left(x^2+3\right)-x^2+1-4=0\)
\(\Rightarrow2x^3+6x-x^2-3=0\)
\(\Rightarrow\left(2x^3+6x\right)-\left(x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+3\right)-\left(x^2+3\right)=0\)
\(\Rightarrow\left(x^2+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=-3\left(L\right)\\x=\dfrac{1}{2}\end{matrix}\right.\)