Chứng tỏ rằng 37 là ước của số có dạng aaabbb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11(91a + 10b) ⋮ 11.
abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101
b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37)
a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)
Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)
=>abab là bội của 101
b)\(aaabbb=111000\cdot a+b\cdot111\)
Mà \(111000⋮37\)và\(111⋮37\)
\(\Rightarrow aaabbb⋮37\)
=>37 là ước aaabbb
Ta có ababab = 10101 x ab mà 10101 chia hết cho 1443 (10101=1443 x 70) nên 1443 là ước của số có dạng ababab.
ababab = 10101 . ab = 1443 . 7 .ab nên 1443 là ước của số có dạng ababab
Ta có :
\(aaa=a\times111=a\times3\times37⋮37\)
\(\Rightarrow aaa\) là bội của 37.
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
TL :
aaa = a . 111
Ta có :
111 = 3 . 37
=> aaa = a . 111 = a . 3 . 37
=> aaa luôn chi hết cho 37
Vậy số có dạng aaa luôn chia hết cho 37
Gọi ƯC(a+1;3a+4)=d(d thuộc Z; d khác 0)
=> a+1 chia hết cho d => 3(a+1) chia hết cho d => 3a+3 chia hết cho d
và 3a+4 chia hết cho d
Suy ra (3a+4)-(3a+3) chia hết cho d
=> 3a+4-31-3 chia hết cho d
=>(3a-3a)+(4-3) chia hết cho d
=>1 chia hết cho d
=> d = 1 hoặc d=-1
=> ƯC(a+1;3a+4)= cộng trừ 1
Vậy a+1/3a+4 là phân số tối giản
Nếu bạn hiểu thì k cho mình nha :))
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
Ta có: abba = a.1000 + b.100 + b.10 + a
= a.1001 + b.110
Vì 1001 chia hết cho 11 nên a.1001 chia hết cho 11
Vì 110 chia hết cho 11 nên b.110 chia hết cho 11
Vậy abba có B(11)
aaabbb = 333777