1. Cho a + b + c = 2p. CMR :
b2 + c2 - a2 + 2bc = 4p (p - a)
2. CMR nếu 2 số a, b nguyên thỏa mãn (5a + 2b) chia hết cho 17 thì (9a + 7b) cũng chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5\cdot\left(5a+2b\right)+\left(9a+7b\right)=25a+10b+9a+7b=34a+17b\)
\(\Rightarrow34a+17b=17\left(2a+b\right)⋮17\)
Do đó: \(\left(5a+2b\right)⋮17\Rightarrow\left(9a+7b\right)⋮17\)
a: 7A-2B
\(=7\cdot\left(5x+2y\right)-2\left(9x+7y\right)\)
\(=35x+14y-18x-14y=17x\)
b: \(7\left(5x+2y\right)+2\left(9x+7y\right)=17y⋮17\)
mà \(5x+2y⋮17\)
nên \(2\left(9x+7y\right)⋮17\)
=>\(9x+7y⋮17\)
\(5a+2b⋮17\)
\(\Rightarrow60a+24b⋮17\)
\(\Rightarrow\left(51a+17b\right)+\left(9a+7b\right)⋮17\)
Do \(51a+17b⋮17\Rightarrow9a+7b⋮17\Rightarrowđpcm\)
a, 7( 5x+ 2y ) - 2( 9x + 7y )
= 35x+ 14y - 18x - 14y
= 35x - 18x
= 17x
b, Ko bt lm ạ
câu a có người trả lời rồi nên mik ko làm nữa!
b) Ta có: 9x+7y = 34x - 25x+17y-10y
=34x+17y+(-25x-10x)
=34x+17y-5(5x+2y)
vì 34 chia hết cho 17
17 chia hết cho 17
(5x+2y) chia hết cho 17
nên nếu x, y thuộc Z thoã mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17.
Cảm ơn đã theo dõi mik
Bài 1:
Ta có:
\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)
\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )
\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)
Do đó ta có đpcm.
Bài 2:
Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.
Ta có: \(5a+2b\vdots 17\)
\(\Leftrightarrow 2(5a+2b)\vdots 17\)
\(\Leftrightarrow 10a+4b\vdots 17\)
\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)
\(\Leftrightarrow 27a+21b\vdots 17\)
\(\Leftrightarrow 3(9a+7b)\vdots 17\)
\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)
Ta có đpcm.