Tam giác ABC có góc A = 70 độ, đường cao AH, D và E đối xứng với H qua AB, AC. DE cắt AB, AC tại M,N.
a) Chứng minh: tam giác DAE cân. Tính góc DAE.
b) Chứng minh: AH là phân giác góc MHN.
c) Chứng minh 3 đường BN, CM, AH đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: \(AH=AD\left(1\right)\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: \(AH=AE\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
a: Ta có: H và D đối xứng nhau qua BA
nên AB là đường trung trực của HD
Suy ra: AB\(\perp\)HD và M là trung điểm của HD
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AC\(\perp\)HE và N là trung điểm của HE
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
Bài làm
a) Vì E,F lần lượt đối xứng với H qua AB,AC. Nên AB lần lượt là trung điểm của của EH và HF
=> AE = AH , AH = AF
=> AE = AF
c) Vì AE = AF => Tam giác ABC cân tại A => \(\widehat{AEF}=\widehat{AFE}\) ( 1 )
Xét tam giác AME và tam giác AMH có:
AM chung
AE = AH ( cmt )
ME = MH ( AB là đường trung trực của EH )
=> tam giác AME = tam giác AMH ( c.c.c )
=> \(\widehat{AEM}=\widehat{AHM}\) ( 2 )
Xét tam giác ANH và tam giác ANF có:
AN chung
AH = AF ( cmt )
NH = NF ( AC là trung trực của HF )
=> tam giác ANH = tam giác ANF ( c.c.c )
=> \(\widehat{AHN}=\widehat{AFN}\) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) => \(\widehat{MHA}=\widehat{NHA}\)
=> HA là phân giác của \(\widehat{MHN}\)
c) Vì NH = NF nên tam giác NHF cân tại N
=> NC là phân giác của \(\widehat{HNF}\)
Xét tam giác EMH có:
EM = MH
=> Tam giác EMH cân tại M
=> MB là phân giác của \(\widehat{EMH}\)
Xét tam giác MNH có:
HA là phân giác của \(\widehat{MHN}\)
Mà BH | AH
=> BH là tia phân giác ngoài của tam giác MNH tại H
NC là tia phân giác ngoài của tam giác MNH tại H
Xét tam giác MNH có MC và HC là hai tia phân giác ngoài của tam giác MNH
=> MC là tia phân giác của góc trong tam giác MNH
=> \(\widehat{BMC}=\frac{\widehat{EMH}+\widehat{HMN}}{2}=90^0\)
Ta có \(\widehat{BMH}+\widehat{HMC}=90^0;\widehat{BMH}+\widehat{MHE}=90^0\)
=> \(\widehat{HMC}=\widehat{EMH}\)
=> CM // EH
Chứng minh tương tự BN // HF
Do đó: AH, BN, CM đồng quy tại một điểm.
# Học tốt #