gpt nghiệm nguyên 5x^2 +9y^2 -12xy +8= 24( 2y -x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
làm tiếp bài của bạn Pham Trung Thanh
Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)
\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)
Vậy pt vô nghiệm nguyên
\(pt\Leftrightarrow9y^2-12xy+4x^2+x^2+8-48y+24x+72=0\)
<=> \(\left(3y-2x\right)^2-16\left(3y-2x\right)+64+x^2-8x+16=0\)
<=> \(\left(3y-2x-8\right)^2+\left(x-4\right)^2=0\)
Để pt xảy ra khi và chỉ khi
x - 4 = 0
3y - 2x - 8 = 0
=> x = 4 và y = 16/3 ( loại )
Vậy không có gt x ; y nguyên tm
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng