So sánh \(47^{30}\) và \(343^{30}\) giải chi tiết nha các bạn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
Hôm nay, olm.vn sẽ mách cho em mẹo làm bài so sánh phân số cách nhanh nhất. Ta quan sát thấy so với mẫu số thì việc quy đồng tử số đơn giản hơn rất nhiều cho việc tìm tử số chung nhỏ nhất.
Vậy ta dùng phương pháp quy đồng tử số em nhé.
Giải chi tiết của em đây
\(\dfrac{10}{41}\) = \(\dfrac{10\times2}{41\times2}\) = \(\dfrac{20}{82}\) < \(\dfrac{20}{61}\)
Vậy \(\dfrac{10}{41}\) < \(\dfrac{20}{61}\)
Vì có số mũ chẵn nên (-5)^10>0
Vì có số́ mũ lẻ nên (-2)^15<0
=>(-5)^10.(-2)^15 là tích 2 số́ đối nhau
=>(-5)^10.(-2)^15<0
Tick nhé
chỉ cần tính kq rồi so sanh
là xong mà
chúc bn học tốt
ahjhj @@@@@
Ta có:
(-245).(-47).(-199)
= một số âm
Vì (-245).(-47)=một số duong
Mà một số dương nhân vs 1 số âm ra 1 số âm
Còn 123.(+315)=Một số đường
Vì số âm luôn luôn lớn hơn số âm:
=> (-245)(-47).(-199)< 123.(+315)
a, \(125^{20}\)và \(25^{30}\)
ta có : \(125^{20}=\left(5^3\right)^{20}\)\(=5^{3.20}=5^{60}\)
\(25^{30}=\left(5^2\right)^{30}=5^{2.30}=5^{60}\)
Vì \(5^{60}=5^{60}\)nên => \(125^{20}=25^{30}\)
b ,\(49^{16}\)và \(343^{20}\)
ta có : \(49^{16}=\left(7^2\right)^{16}=7^{2.16}=7^{32}\)
\(343^{20}=\left(7^3\right)^{20}=7^{3.20}=7^{60}\)
Vì \(7^{32}< 7^{60}\)nên => \(49^{16}< 343^{20}\)
c, \(121^{15}\)và \(1331^{16}\)
ta có : \(121^{15}=\left(11^2\right)^{15}=11^{2.15}=11^{30}\)
\(1331^{16}=\left(11^3\right)^{16}=11^{3.16}=11^{48}\)
Vì \(11^{30}< 11^{48}\)nên => \(121^{15}< 1331^{16}\)
d, \(199^{20}\)và \(2003^{15}\)
ta có : \(199^{20}=199^{5.4}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=2003^{3.5}=\left(2003^3\right)^5=8036054027^5\)
Vì \(1568239201^5< 8036054027^5\)nên => \(199^{20}< 2003^{15}\)
e, \(4^{25}\)và \(3^{30}\)
=> \(4^{25}< 3^{30}\)
f, \(36^{82}\)và \(49^{123}\)
=> \(36^{82}< 49^{123}\)
mình làm rồi đó . k mình đi
Bài này nãy mình có tìm trên mạng thì cũng có, bạn tham khảo nha
Ta có: 19920<20020
200315>200015
Lại có: 20020=(2.100)20=(2.102)20=220.1040=215.25.1040
200015=(2.1000)15=(2.103)15=215.1045=215.1040.105
Ta thấy: 25<105 => 20020 < 200015 => 19920 < 200315
Nguồn: Olm.
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
Lời giải:
$47< 343\Rightarrow 47^{30}< 343^{30}$