Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
227 = (23)9 = 89
318 = ( 32)9 = 99
Vì 9 > 8 nên : 99 > 89
Vậy suy ra: 318 > 227
\(8^{15}=\left(2^3\right)^{15}=2^{3.15}=2^{45}\\ 16^4=\left(2^4\right)^4=2^{4.4}=2^{16}\\ 2^{45}>2^{16}\Rightarrow8^{15}>16^4\)
Ta có :
- 9999=101.99\(\Rightarrow\)999910=(101.99)10=10110.9910
- 9920=9910+10=9910.9910
Vì 10110>9910\(\Leftrightarrow\)10110.9910>9910.9910\(\Leftrightarrow\)999910>9920
Vậy 999910>9920
2²⁰ = (2⁵)⁴ = 32⁴
3¹² = (3³)⁴ = 27⁴
Do 32 > 27 nên 32⁴ > 27⁴
Vậy 2²⁰ > 3¹²
220 = (25)4 = 324
312 = (33)4 = 274
Vì 32 > 27 ⇒ 324 > 274 ⇒ 220 > 312
Lời giải:
$47< 343\Rightarrow 47^{30}< 343^{30}$