K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Bạn nào giúp mình thì mình k luôn

17 tháng 11 2018

Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC. 
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5 
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
=> tam giác AEB ~ tam giác HEC(g.g) 
=> Góc HCE = góc ABE. 
=> Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
=> tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC² 
=> √2.CH = IC 
=> CH = (IC)/(√2) 
=> CH = 6/(√2) 
=> DC = 2CH = 12/(√2) = 6√2 
Xét tam giác: ADC có góc DAC = 90độ 
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC² 
=> AC² = DC² - AD² 
=> AC² = (6√2)² - (x - 5)² (3) 
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² 
=> AC² = x² - 5² (4) 
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5² 
<=> 72 - (x² - 10x + 25) = x² - 25 
<=> 72 - x² + 10x - 25 - x² + 25 = 0 
<=> -2x² + 10x + 72 = 0 
<=> x² - 5x - 36 = 0 
<=> x² - 9x + 4x - 36 = 0 
<=> x(x - 9) + 4(x - 9) = 0 
<=> (x - 9)(x + 4) = 0 
<=> x - 9 = 0 hoặc x + 4 = 0 
<=> x = 9 hoặc x = -4 
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5 
=> BC = 5cm 

b/ Tương tự ta tính được: CH = √5. => IH = √5 (cm) 
=> BH = BI + IH = √5 + √5 = 2√5 (cm). 
Xét tam giác BHC có góc BHC = 90độ => tính được BC = 5(cm). Kẻ IK ⊥ BC tại K. 
Ta có IK = 1/2 đường cao hạ từ đỉnh H của tam giác BHC (chứng minh dựa vào tính chất đường trung bình). 
=> IK.BC = S(BHC) = BH.HC/2 
<=> IK.5 = 5 
=> IK = 1(cm). 
Xét tam giác BIK => tính được BK = 2 cm. 
Kẻ IF vuông góc với AB => ta chứng minh đựơc BF = BK và AF = IF = IK 
=> AB = (2 + 1)=3 (cm) 
=> AC = 4cm

12 tháng 1 2021

Đặt BC = a, CA = b, AB = c.

Do tam giác ABC vuông tại A nên: \(a^2=b^2+c^2\) (định lý Pytago).

Ta tính được: \(m=\dfrac{a+c-b}{2};n=\dfrac{c+b-a}{2}\).

Từ đó: \(mn=\dfrac{\left(a+c-b\right)\left(c+b-a\right)}{4}=\dfrac{c^2-\left(a-b\right)^2}{4}=\dfrac{\left(a^2+b^2\right)-\left(a-b\right)^2}{4}=\dfrac{ab}{2}=S_{ABC}\).

Vậy...

28 tháng 7 2021

chắc chắn ko bn

7 tháng 3 2018

kẻ IE vuông vs AC ; ID vuông vs AB

do Bi là p/g góc ABC

    CI là p/g góc ACB

suy ra ID=IK

lại có ID//AE ( cung vuông vs AD)

         IE//AD ( cùng vuông vs AE )

suy ra ID=IE=AD=AE=IK

đặt ID=IE=AD=AE=IK=x

xét tam giác BIK= tam giác BID

=) BD=BK=a

tương tự =) CK=CE=b

áp dụng định lí py ta go cho ABC vuông tại A ta có:

AB^2 + AC^2= BC^2

(a+x)^2 + (b+x)^2 = (a+b)^2

ax + bx +x^2 =ab

( phần sau tự lm)