Cho hình bình hành ABCD. Từ đỉnh A kẻ đường thẳng song song với đường chéo BD cắt các tia CB và CD lần lượt tại E và F.
CM : a, Các tứ giác ADBE và ABDF là hình bình hành
b, Các đoạn thẳng AC, ED và BF đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDF có
AB//DF
BD//AF
Do đó: ABDF là hình bình hành
Xét tứ giác ADBE có
AE/BD
BE//AD
Do đó: ADBE là hình bình hành
b: Đề sai rồi bạn
Tứ giác ABCD là hình bình hành => AB//CD; AD//BC.
=> Giao điểm của AC; BD là trung điểm của mỗi đường
=> N là trung điểm BD (1)
Ta có: AE//BD. Mà AD//BE => Tứ giác AEBD là hình bình hành.
=> 2 đường chéo DE và AB cắt nhau tại trung điểm của mỗi đường.
=> M là trung điểm AB (2)
Tương tự: Tứ giác ABDF là hình bình hành
=> P là trung điểm AD (3)
Từ (1); (2) và (3) => G là trọng tâm của tam giác BAD.
=> AN, DM, BP đồng quy = >AC; DE; BF đồng quy (điều cần c/m).
Xét tứ giác AEBD có :
DB//FA (gt) hay DB//AE
AD//BC ( ABCD là hình bình hành ) hay AD//BE
suy ra , tứ giác AEBD là hình bình hành
a: Xét tứ giác AMCn có
AM//Cn
AM=CN
=>AMCN là hình bình hành
b; Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF=FB