K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Lời giải:

Bài 1:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi H là giao điểm của AB và CD

Nối AC, AD,BC,BD

Xét ΔACD và ΔBCD, ta có:

AC = BC

(bán kính hai cung tròn bằng nhau)

AD = BD

CD cạnh chung

Suy ra: ΔACD= ΔBCD(c.c.c)

Suy ra: ∠C2 =∠C2 (hai góc tương ứng)

Xét hai tam giác AHC và BHC. Ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

∠C2 =∠C2 (chứng minh trên)

CH cạnh chung

Suy ra: ΔAHC= ΔBHC(c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng) (1)

Ta có : ∠H1 =∠H2 (hai góc tương ứng)

∠H1 + ∠H2 =180° (hai góc kề bù)

Suy ra: ∠H1 =∠H2 =90° => CD ⊥ AB (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB

27 tháng 2 2019

bài 2Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

=> ∠KDB =C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B =∠C (tính chất tam giác cân)

Suy ra: ∠KDB =B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD =∠DKB

BD cạnh huyền chung

∠FBD =∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB(cạnh huyền góc nhọn)

=> DF = BK (hai cạnh tương ứng)(1)

Nối DH. XétΔDEHvàΔDKH, ta có:

∠DEH =∠DKH =90°

DH cạnh huyền chung

∠EHD =∠KDH (hai góc so le trong)

Suy ra:ΔDEH=ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác : BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF = DE = BH

20 tháng 6 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi H là giao điểm của AB và CD

Nối AC, AD,BC,BD

Xét ΔACD và ΔBCD, ta có:

AC = BC

(bán kính hai cung tròn bằng nhau)

AD = BD

CD cạnh chung

Suy ra: ΔACD = ΔBCD(c.c.c)

Suy ra: ∠C1 = ∠C2 (hai góc tương ứng)

Xét hai tam giác AHC và BHC. Ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

∠C1 = ∠C2 (chứng minh trên)

CH cạnh chung

Suy ra: ΔAHC = ΔBHC(c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng) (1)

Ta có : ∠H1 = ∠H2 (hai góc tương ứng)

∠H1 + ∠H2 =180° (hai góc kề bù)

Suy ra: ∠H1 = ∠H2 = 90o ⇒ CD ⊥ AB (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB

19 tháng 5 2017

A B C D H 1 2 1 2

Xét hai tam giác ACD và BCD có:

AC = BC (gt)

AD = BD (gt)

CD: cạnh chung

Vậy: \(\Delta ACD=\Delta BCD\left(c-c-c\right)\)

Suy ra: \(\widehat{C_1}=\widehat{C_2}\) (hai góc tương ứng)

Xét hai tam giác ACH và BCH có:

AC = BC (gt)

\(\widehat{C_1}=\widehat{C_2}\) (cmt)

CH: cạnh chung

Vậy: \(\Delta ACH=\Delta BCH\left(c-g-c\right)\)

Suy ra: \(\widehat{H_1}=\widehat{H_2}\), HA = HB

\(\widehat{H_1}+\widehat{H_2}=180^o\)

Nên \(\widehat{H_1}=\widehat{H_2}\) = 90o

Do đó: \(CH\perp AB\)

\(CD\perp AB\)và HA = HB nên CD là đường trung trực của AB.

24 tháng 2 2018

Hướng dẫn, tự vẽ hình:

Trung tâm A và B cùng bán kính

=>  CA = CB  DA = DB

Hai điểm C D cách đều 2 điểm A B nên CD là đường trung trực của AB.

24 tháng 2 2018

Cung tâm A và cung tâm B có cùng bán kính 

\(\Rightarrow\)CA = CB 

Và DA = DB 

Hai điểm C và D cách đều 2 điểm A và B nên CD là đường trung trực của AB ( đpcm )

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).