K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Mình có cách này bạn xem thử và check nhé!

Do tam giác ABC có \(\widehat{A}=\widehat{B}+\widehat{C}\). Mà tổng ba góc trong tam giác là 180o nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow\widehat{A}+\widehat{A}=180^o\Leftrightarrow2.\widehat{A}=180^o\Leftrightarrow\widehat{A}=90^o=\widehat{B}+\widehat{C}\). Do đó tam giác ABC vuông tại A.

A B C O 1 2 1 2

Ta có: Xét tam giác ABC,theo định lí về tổng số đo của ba góc trong tam giác,ta suy ra

\(\widehat{BOC}=180^o-\left(\widehat{B_1}+\widehat{C_1}\right)\) (1)

\(=180^o-\left(\widehat{B}+\widehat{C}-\widehat{B_2}-\widehat{C_2}\right)=180^o-90^o+\widehat{B_2}+\widehat{C_2}=90^o+\widehat{B_2}+\widehat{C_2}=90^o+\widehat{B_1}+\widehat{C_1}\) (2) (do \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\)).Từ (1) và (2),ta có: \(180^o-\left(\widehat{B_1}+\widehat{C_1}\right)=90^o+\widehat{B_1}+\widehat{C_1}\Rightarrow180^o-90^o=2\left(\widehat{B_1}+\widehat{C_1}\right)\)

\(\Rightarrow\widehat{B_1}+\widehat{C_1}=45^o\). Thay vào (1) (hoặc thay vào (2) cũng được) ,ta suy ra: \(\widehat{BOC}=180^o-\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-45=135^o\)

Xét ΔABC có \(\widehat{A}=\widehat{B}+\widehat{C}\)

nên ΔABC vuông tại A

Xét ΔABC có 

AO là phân giác

CO là phân giác

Do đó: BO là phân giác của góc CBA

\(\widehat{OCB}+\widehat{OBC}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ABC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

nên \(\widehat{BOC}=135^0\)

23 tháng 8 2019

Chọn C

26 tháng 11 2021

Giúp với 

20 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Do AO, CO lần lượt là tia phân giác của ∠A và ∠C nên BO là tia phân giác của ∠B

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét tam giác OBC có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Chọn (C) 135º.

a: góc A=180/2=90 độ

b: góc OBC+góc OCB=90/2=45 độ

=>góc BOC=135 độ