Cho tổng S= 2+4+6+...+2n=6972, biết n là một số tự nhiên. Tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(S=2+4+6+...+2n=6972\)
\(\Rightarrow\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)
\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)
\(\Rightarrow n\left(n+1\right)=6972\)
\(\Rightarrow n^2+n-6972=0\)
\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)
\(\Rightarrow n=83\)
#~Will~be~Pens~#
b: \(2n+8⋮n-1\)
=>\(2n-2+10⋮n-1\)
=>\(10⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{2;0;3;6;11\right\}\)
a: \(S=1+2^2+2^4+...+2^{100}\)
=>\(4\cdot S=2^2+2^4+2^6+...+2^{102}\)
=>\(4\cdot S-S=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)
=>\(3\cdot S=2^{102}-1\)
=>\(S=\dfrac{2^{102}-1}{3}\)
Số số hạng là :
( 2n - 2 ) : 2 + 1
= 2 ( n - 1 ) : 2 + 1
= n - 1 + 1
= n
Tổng là :
( 2n + 2 ) . n : 2 = 110
2 ( n + 1 ) . n : 2 = 110
n ( n + 1 ) = 110
mà n và n+1 là 2 số liên tiếp mặt khác ta có 110 = 10 . 11
=> n = 10
Vậy, n = 10
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
\(n^2+2n+6=n.\left(n+4\right)-2n+6\)
\(=n.\left(n+4\right)-2.\left(n+4\right)-2⋮n+4\)
\(=>n+4\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
\(=>n=\left\{...\right\}\)
P/S: lần này mà tiếp tục ... là ko giúp đâu
\(S=\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)
\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)
\(\Rightarrow n\left(n+1\right)=6972\)
\(\Rightarrow n^2+n-6972=0\)
\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)
\(\Rightarrow n=83\) ( TM )