Tìm số dư trong phép chia 19972008 cho 2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Fermat thì:
$2002^{18}\equiv 1\pmod {19}$
$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$
$2002\equiv 7\pmod {19}$
$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$
Vậy $2002^{2003}$ chia $19$ dư $11$
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9
Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26
=> 27^667-1 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha
Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9
Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :
27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26
Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13
=> 3^2003-9 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha