K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Câu a =13 

Câu b =2 con câu c lam tuong tu 

29 tháng 10 2016

tại sao caí bài này  ko làm đcj

5 tháng 7 2023

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

5 tháng 7 2023

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

Đặt \(13p+1=n^3\left(n\in N\right)\)

\(\Leftrightarrow13p=n^3-1\)

\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)

Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)

\(\Leftrightarrow n=14\)

hay \(p=14^2+14+1=196+14+1=211\)(nhận)

Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)

\(\Leftrightarrow n^2+2=13-p\)

\(\Leftrightarrow\left(p+1\right)^2=11-p\)

\(\Leftrightarrow p=2\)(nhận)

Vậy: \(p\in\left\{2;211\right\}\)

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

Đặt 7p + 1 = n^3 (n > 2)

=> 7p = (n - 1)(n^2 + n + 1)

Ta có 2 TH :

TH1 : n -  1  = 7 \(\forall\)n^2 + n +1 = p => n = 8 => p = 73

TH2 : n - 1 = p \(\forall\) n^2 + n + 1 =7 => ....

30 tháng 7 2023

Lời giải:

Đặt 7�+1=�3 với  là số tự nhiên.

⇔7�=�3−1=(�−1)(�2+�+1)

Đến đây có các TH: 

TH1: �−1=7;�2+�+1=�

⇒�=8;�=73 (tm) 

TH2: �−1=�,�2+�+1=7

⇒�=2 hoặc �=−3

⇒�=1 hoặc �=−4 (không thỏa mãn) 

TH3: �−1=7�;�2+�+1=1 (dễ loại) 

TH4: �−1=1; �2+�+1=7� (cũng dễ loại)

Lý thuyết : 

Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố . 
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước 
- Tập hợp số nguyên tố là vô hạn 
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số 
- Số nguyên tố chẵn duy nhất là 2 
- Số a và b gọi là 2 số nguyên tố cùng nhau 
- p là số nguyên tố; p > 2 có dạng : p = 4n + 1 hoặc p= 4n+3 
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5 
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N 
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố ) 
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N) 
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số ) 


Bài tập: 

Đặt 2p + 1 = n³ với n là số tự nhiên 

Cách giải: phân tích ra thừa số 
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó. 

Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

thay 2p+1 là 7p+1 nha 

thay vào mak tự làm sẽ thông minh hơn@@

2 tháng 9 2018

\(7p+1=a^3\)( a là số nguyên )

\(\Rightarrow7p=a^3-1\)

\(\Rightarrow7p=\left(a-1\right)\left(a^3+a+1\right)\)( Phân tích ra hằng đẳng thức )

\(\Rightarrow7p⋮a-1\)

Mà 7 và p đều là các số nguyên tố nên ta xét 2 trường hợp: 

Làm nốt đi xét các trường hợp rồi thay vô giải là xong nha :3

15 tháng 7 2017

1.Với  a = 2 ta có 2a + 1 = 5 không thích hợp

Với a   ≠ 2  do a là số nguyên tố nên a lẽ

Vậy 2a + 1 là lập phương của một số lẽ nghĩa là

Từ đó k là ước của a. Do k là số nguyên tố nên k = 1 hoặc k = a

-Nếu k = 1 thì 2a + 1 = (2.1 + 1)3 suy ra a = 13 thớch hợp

-   Nếu a = k từ a = a(4a2 + 6a + 3) do a là nguyên tố nên suy ra

 1 = 4a2 + 6a + 3  không có số nguyên tố a nào thoả món phương trỡnh này  Vì vế phải luụn lớn hơn 1

Vậy a = 13

2.Giả sử  

13 và p là các số nguyên tố , mà n – 1 > 1 và n2 + n + 1 > 1

Nên n – 1 = 13 hoặc  n – 1 = p

-    Với n – 1 =13 thì n = 14 khi đó 13p = n3 – 1 = 2743 suy ta p = 211 là số nguyên tố

- Với n – 1 = p thi n2 + n + 1 = 13 suy ra n = 3 . Khi đó p = 2 là số nguyên tố

 Vậy  p = 2, p = 211 thì 13p + 1  là lập phương của một số tự nhiên

4 tháng 9 2016

a. a =1 

b . p = 22

4 tháng 9 2016

xin lỗi tớ nhầm 

Đặt 2p + 1 = n³ với n là số tự nhiên 

Cách giải: phân tích ra thừa số 
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó. 

Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13